Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Error bounds for the perturbation of the Drazin inverse under some geometrical conditions $\stackrel{\scriptscriptstyle \, \ensuremath{\not{\sim}}}{}$

J.Y. Vélez-Cerrada, J. Robles *, N. Castro-González

Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

ARTICLE INFO

Keywords: Singular matrix Drazin inverse Eigenprojectors Perturbation bounds

ABSTRACT

This paper studies the Drazin inverse for perturbed matrices. For that, given a square matrix *A*, we consider and characterize the class of matrices *B* with index *s* such that $\mathscr{R}(BA^D) \cap \mathscr{N}(A^D) = \{0\}, \mathscr{N}(A^D B) \cap \mathscr{R}(A^D) = \{0\}$, and $\mathscr{R}(B^S) = \mathscr{R}(BA^D)$, where $\mathscr{N}(A)$ and $\mathscr{R}(A)$ denote the null space and the range space of a matrix *A*, respectively, and A^D denote the Drazin inverse of *A*. Then, we provide explicit representations for B^D and BB^D , and upper bounds for the relative error $||B^D - A^D|| / ||A^D||$ and the error $||BB^D - AA^D||$. A numerical example illustrates that the obtained bounds are better than others given in the literature. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

* Corresponding author.

Let $A \in \mathbb{C}^{n \times n}$ be any complex square matrix of order *n*. The *index of A*, denoted by ind(A), is the smallest nonnegative integer *r* such that $rankA^r = rankA^{r+1}$. Let $\mathscr{R}(A)$ and $\mathscr{N}(A)$ denote the range space of *A* and the null space of *A*, respectively. We recall that the *Drazin inverse of* $A \in \mathbb{C}^{n \times n}$ is the unique matrix $A^{\mathsf{D}} \in \mathbb{C}^{n \times n}$ satisfying the relations

$$A^{\mathrm{D}}AA^{\mathrm{D}} = A^{\mathrm{D}}, \quad AA^{\mathrm{D}} = A^{\mathrm{D}}A, \quad A^{l+1}A^{\mathrm{D}} = A^{l}, \text{ for all } l \ge r,$$

where r = ind(A). If A is nonsingular then ind(A) = 0 and $A^{D} = A^{-1}$. The case when ind(A) = 1, i.e., $rankA = rankA^{2}$, the Drazin inverse is called the *group inverse of A* and is denoted by A^{\sharp} .

If $\operatorname{ind}(A) = r$, then $\mathbb{C}^n = \mathscr{R}(A^r) \oplus \mathscr{N}(A^r)$ and we have $\mathscr{R}(A^D) = \mathscr{R}(A^r)$ and $\mathscr{N}(A^D) = \mathscr{N}(A^r)$. The eigenprojection of A corresponding to the eigenvalue 0, denoted by A^{π} , is the uniquely determined projector such that $\mathscr{R}(A^{\pi}) = \mathscr{N}(A^r)$ and $\mathscr{N}(A^{\pi}) = \mathscr{R}(A^r)$.

We have that $A^{\pi} = I - AA^{D}$. Hence, we easily see that if ind(A) = 1, then $A^{\pi}A = AA^{\pi} = 0$.

In [2], Campbell and Meyer established that if A_j converges to A, then A_j^D converges to A^D if and only if rank $A_j^{r_j} = \operatorname{rank} A^r$ for all sufficiently large j, where $r_j = \operatorname{ind}(A_j)$. The continuity of the Drazin inverse was studied in [1–3,11].

The problem of the perturbation of the Drazin inverse for matrices has been studied recently by several authors (see [4–6,8,9,12,13]).

Let $A \in \mathbb{C}^{n \times n}$ be given and let *s* be a positive integer. We introduce the following geometrical conditions on $B \in \mathbb{C}^{n \times n}$:

$$\mathscr{R}(BA^{D}) \cap \mathscr{N}(A^{D}) = \{0\}, \ \mathscr{N}(A^{D}B) \cap \mathscr{R}(A^{D}) = \{0\}, \quad \text{and} \ \mathscr{R}(B^{s}) = \mathscr{R}(BA^{D}).$$
(1.1)

Throughout this paper we consider the classes of perturbed matrices

 $\mathscr{A}_{s} = \{B \in \mathbb{C}^{n \times n} : \operatorname{ind}(B) = s \text{ and } B \text{ satisfies conditions } (1.1)\}.$

^{*} The research is supported by Project MTM2007-67232, "Ministerio de Educación y Ciencia" of Spain.

E-mail addresses: jyvelezc@hotmail.com (J.Y. Vélez-Cerrada), jrobles@fi.upm.es (J. Robles), nieves@fi.upm.es (N. Castro-González).

^{0096-3003/\$ -} see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.08.003

We see that \mathscr{A}_s contains the set of matrices $B \in \mathbb{C}^{n \times n}$ with ind(B) = s such that:

$$\mathscr{R}(B^{s}) = \mathscr{R}(A^{\mathsf{D}}) \text{ and } \mathscr{N}(B^{s}) = \mathscr{N}(A^{\mathsf{D}})$$

We remark that the above conditions are equivalent to the fact that $B^{\pi} = A^{\pi}$. This latter class of matrices was characterized in [4].

Later we will prove that \mathscr{A}_s also contains the class of matrices $B \in \mathbb{C}^{n \times n}$ which satisfy the following conditions:

$$\|A^{\mathsf{D}}(B-A)\| < 1, B^2 A A^{\mathsf{D}} = (BAA^{\mathsf{D}})^2, \quad \text{and } \operatorname{rank} B^s = \operatorname{rank} A^{\mathsf{D}}, \tag{1.2}$$

where *s* is the smallest positive integer such that the third of the above conditions holds. An upper bound for the relative error $||B^D - A^D|| / ||A^D||$, under conditions (1.2), was derived in [9]. In this paper we extend the above mentioned result. We note that in the case that *s* = 1, the class \mathscr{A}_1 can be expressed in the form

we note that in the case that s = 1, the class \mathcal{A}_1 can be expressed in the re-

$$\mathscr{A}_1 = \{B \in \mathbb{C}^{n \times n} : \operatorname{ind}(B) = 1, \quad \mathscr{R}(B) \cap \mathscr{N}(A^{D}) = \{0\}, \mathscr{N}(B) \cap \mathscr{R}(A^{D}) = \{0\}\}.$$

The perturbation problem of group inverse is a case of special interest due to its application to the study of stability of Markov chains (see [3,10]). In this context, we prove that if \mathscr{C} is an ergodic Markov chain with transition matrix $T \in \mathbb{C}^{n \times n}$ and $\widetilde{\mathscr{C}}$ is a perturbed ergodic chain of \mathbb{C} with $\widetilde{T} \in \mathbb{C}^{n \times n}$ its transition matrix, then $I - \widetilde{T}$ belongs to \mathscr{A}_1 . We obtain the results given in [10, Theorems 3.1 and 4.1].

In this paper, in Section 2, we establish several characterizations of the matrices $B \in \mathscr{A}_s$. In terms of matrix rank, this class of matrices is characterized by rank $B^s = \operatorname{rank} A^D B^s = \operatorname{rank} A^D B A^D = \dim(\mathscr{R}(BA^D) \cap \mathscr{R}(B^{s+1}))$. We also give a block matrix representation for the perturbed matrices, which will be very useful in the perturbation analysis.

In Section 3 we provide explicit formulas of B^{D} and B^{π} , and we derive upper bounds for $||B^{D} - A^{D}|| / ||A^{D}||$ and $||B^{\pi} - A^{\pi}||$ in terms of norms involving the matrix B - A. We compare our bounds with others given recently in [5,12,13] in a numerical example. We prove that if B verifies (1.2), then $B \in \mathscr{A}_{s}$. So, we recover the result given in [9].

The next lemma establishes a condition for the existence of the group inverse of a partitioned matrix and a formula for its computation (see [3, Theorem 7.7.7]).

Lemma 1.1. Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be square with $A \in \mathbb{C}^{d \times d}$ nonsingular and denote $\Psi = I + A^{-1}BCA^{-1}$. If rank M = rank A, then we have

 $ind(M) = 1 \iff \Psi$ is nonsingular.

In this case, the group inverse and eigenprojection at zero of M are given by

$$M^{\sharp} = \begin{pmatrix} I \\ CA^{-1} \end{pmatrix} (\Psi A \Psi)^{-1} (I A^{-1} B),$$

$$M^{\pi} = \begin{pmatrix} I - \Psi^{-1} & -\Psi^{-1} A^{-1} B \\ -CA^{-1} \Psi^{-1} & I - CA^{-1} \Psi^{-1} A^{-1} B \end{pmatrix}.$$
(1.3)

The following lemma is concerned with the rank of a product of matrices (see [14, Sec. 2.4]).

Lemma 1.2. Let $A, B \in \mathbb{C}^{n \times n}$. Then

$$\operatorname{rank} AB = \operatorname{rank} B - \dim(\mathscr{R}(B) \cap \mathscr{N}(A)). \tag{1.4}$$

In this paper, we will use, without mention it, that if $P, Q \in \mathbb{C}^{n \times n}$ are nonsingular, then rank $PAQ = \operatorname{rank} PA = \operatorname{rank} AQ = \operatorname{rank} AA$.

2. Characterizations of the class of matrices A_s

In this section we give several characterizations of the class of matrices \mathscr{A}_s . First, we recall that if ind(A) = r > 0, then there exists a nonsingular matrix P such that we can write A in the *core-nilpotent block form*

$$A = P \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} P^{-1} \quad A_1 \in \mathbb{C}^{d \times d} \text{ nonsingular}, \quad A_2^r = 0.$$
(2.1)

By [3, Theorem 7.2.1], relative to the form (2.1), the Drazin inverse of A and the eigenprojection of A at zero are given by

$$A^{\rm D} = P \begin{pmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{pmatrix} P^{-1}, \quad A^{\pi} = I - AA^{\rm D} = P \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} P^{-1}.$$
 (2.2)

We note that $rankA^r = rankA^D = d$.

Theorem 2.1. Let $A, B \in \mathbb{C}^{n \times n}$. Assume that there exists the smallest positive integer *s* such that rank $B^s = \operatorname{rank} A^D = d$. Then the following statements are equivalents:

Download English Version:

https://daneshyari.com/en/article/4633047

Download Persian Version:

https://daneshyari.com/article/4633047

Daneshyari.com