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a b s t r a c t

In this article, we propose and implement a numerical technique based on residue minimi-
zation to solve the nonlinear differential equation, which governs the temperature distri-
bution in straight convective fins having temperature-dependent thermal conductivity.
The form of temperature distribution is approximated by a polynomial series, which
exactly satisfies the boundary conditions of the problem. The unknown coefficients of
the assumed series are optimized using the Nelder–Mead simplex algorithm such that
the squared L2 norm of the residue attains its minimum value within a specified tolerance
limit. The near-exact solution thus obtained is further used to calculate the fin efficiency.
For the case of constant thermal conductivity, the obtained results are validated with the
analytical solutions, while for the case of variable thermal conductivity, the obtained
results are corroborated with those previously published in the literature. An excellent
agreement in each case consolidates the effectiveness of the proposed numerical
technique.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Extended surfaces (fins) are widely used in many engineering applications which include, but are not limited to, air con-
ditioning, refrigeration, automobile and chemical processing equipments. The primary objective of using fins is to enhance
the heat transfer between the base surface and its convective, radiative or convective–radiative environment.

For convective fins having constant thermal conductivity, determination of temperature distribution along the length of
the fin requires the solution of a linear differential equation, which is straightforward to obtain [1]. However, when a large
temperature gradient exists within the fin, the dependence of thermal conductivity on the temperature can be significant.
For most engineering materials, the temperature-dependent thermal conductivity is modeled as a linear function of the tem-
perature [2]. Consequently, the temperature distribution along the length of the fin is governed by a nonlinear differential
equation and in most cases, solving these equations involve numerical methods.

The nonlinear fin problem has received a significant attention in recent years in view of its practical applications in semi-
conductors, heat exchangers, power generators and electronic components. Several researchers have applied well-known
numerical techniques to solve the nonlinear fin equation. Some of the pertinent research works include, implementation
of the perturbation method [3], Adomian decomposition method [4–6], Taylor’s series method [7,8], variational iteration
method [9,10], homotopy analysis method [11], homotopy perturbation method [12,13], shooting method [14] and the dif-
ferential transformation method [15].

Many of the aforementioned numerical techniques comprise an involved procedure to arrive at the final solution.
For example, in the Adomian decomposition method (ADM), it is difficult to arrive at the expressions of the Adomian
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polynomials [12]. The variational iteration method is shown to be useful for a lower degree of nonlinearity, however, its per-
formance degrades with an increase in the extent of nonlinearity in the system [10]. In addition, a computer implementation
of the aforementioned techniques is relatively difficult, which may be necessary in cases such as, combined heat and mass
transfer [8], temperature dependency of heat transfer coefficient [14] and shape optimization of fins [15]. These observations
necessitate the development of a simpler yet accurate numerical technique, which is easily programmable and reduces the
number of intermediate steps towards obtaining a solution.

To this end, we describe an accurate numerical technique based on residue minimization, which is a two-step process
ultimately leading to a near-exact solution to the nonlinear fin equation. The proposed numerical technique relies on
approximating the temperature distribution by a polynomial series that exactly satisfies the boundary conditions. The un-
known coefficients of the polynomial series are then optimized in order to minimize the squared L2 norm of the residue. Thus
the resulting approximate solution of temperature distribution exactly satisfies all boundary conditions of the problem and
near-exactly satisfies the governing differential equation.

The rest of the article is organized in four sections. Section 2 formulates the problem under consideration and highlights
the nonlinear nature of the governing differential equation. A two-step solution technique is proposed in Section 3, which
results in a near-exact solution to the differential equation. In Section 4, we compare the obtained results with the analytical
and the previously published results to bring out the quantitative inferences. The salient conclusions drawn from the present
investigation are summarized in Section 5.

2. Formulation of the problem

Fig. 1 shows the schematic of a prismatic fin having an arbitrary cross-sectional area Ac , perimeter p and length b. The
temperature of the base surface is Tb, while the ambient temperature is Ta. The tip of the fin ðx ¼ 0Þ is assumed to be insu-
lated. Also, the fin is assumed to be thin, which implies that temperature variations in the longitudinal direction are much
larger than those in the transverse direction. The one-dimensional energy balance equation for an infinitesimal small ele-
ment dx is written as,

Ac
d
dx

kðTÞ dT
dx

� �
� phðT � TaÞ ¼ 0; ð1Þ

where h is the convective heat transfer coefficient and TðxÞ is the temperature along the length of the fin. Eq. (1) is obtained
by combining the steady state one-dimensional Fourier heat conduction equation and Newton’s law of cooling. While writ-
ing this equation, we assume that the heat generation effects are absent, that the radiation from the surface is negligible and
that the convective heat transfer coefficient h is uniform over the surface [1]. Also, kðTÞ denotes the temperature-dependent
thermal conductivity, which is approximated by the following relation [2],

kðTÞ ¼ ka½1þ �kðT � TaÞ�; ð2Þ

where ka is the thermal conductivity of the fin at the ambient fluid temperature and �k is a parameter defining the variation of
thermal conductivity. The typical values of the thermal conductivity of metals at normal temperature and pressure (NTP)

Fig. 1. Schematic of a straight prismatic convective fin.
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