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a b s t r a c t

Efficient L-stable numerical method for semilinear parabolic problems with nonsmooth
initial data is proposed and implemented to solve Heston’s stochastic volatility model
based PDE for pricing American options under stochastic volatility. The proposed new
method is also used to solve two asset American options pricing problem. Cox and
Matthews [S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, Journal
of Computational Physics 176 (2002) 430–455] developed a class of exponential time
differencing Runge–Kutta schemes (ETDRK) for nonlinear parabolic problems. Kassam
and Trefethen [A.K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM
Journal on Scientific Computing 26 (4) (2005) 1214–1233] showed that while computing
certain functions involved in the Cox–Matthews schemes, severe cancelation errors can
occur which affect the accuracy and stability of the schemes. Kassam and Trefethen
proposed complex contour integration technique to implement these schemes in a way
that avoids these cancelation errors. But this approach creates new difficulties in choosing
and evaluating the contour integrals for larger problems. We modify the ETDRK schemes
using positivity preserving Padé approximations of the matrix exponential functions and
construct computationally efficient parallel version using splitting technique. As a result
of this approach it is required only to solve several backward Euler linear problems in serial
or parallel.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Problems having irregular initial data or mismatched initial and boundary conditions occur in various applications,
including mechanical engineering, computational chemistry, and financial engineering. Nonsmooth payoffs cause disconti-
nuities in the solution (or its derivatives) and standard A-stable methods (e.g., Crank–Nicolson) are prone to produce large
and spurious oscillations in the numerical solutions which would mislead to estimating options accurately if one does not
treat the problem carefully.

Cox and Matthews [2] developed a class of exponential time differencing schemes (ETD) for nonlinear stiff systems of
ODEs and extended the results to solve nonlinear parabolic problems. This approach reduces the spatially discretized PDE
using Duhamel’s principle on one time step to an integral equation followed by approximation of the integral involving
nonlinear function. The nonlinear function is approximated by a polynomial. In the analysis, Cox and Matthews treated
scalar examples (ODEs) and systems of two PDEs with special form. Kassam and Trefethen [9] addressed the limited
generality of the Cox–Matthews schemes and showed that these schemes can suffer from severe cancelation errors when
computing certain functions involved in the schemes. A new strategy based on contour integral was introduced to improve
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the general applicability of these schemes. Use of complex contour integration to implement these schemes avoids inverting
matrix polynomials, but this approach creates new difficulties in choosing and evaluating the contour integrals for larger
problems.

Cox–Matthews schemes as well as Kassam–Trefethen modifications require calculating matrix exponentials. Even if the
original matrix is sparse, the matrix exponential will not itself be sparse, which can be a significant amount of work and af-
fect the computational efficiency of the scheme. For one-dimensional problems the calculation is not very expensive, how-
ever, the cost goes up as the dimension increases. Also, neither Cox–Matthews development nor Kassam–Trefethen
modification addresses problems with nonsmooth data.

In the Kassam–Trefethen approach, contour integrals are evaluated by means of some numerical technique and must con-
tain spectrum of the discretization matrix A. Generally the eigenvalues of A lie in or near the left half of the complex plane
and they may cover a wide range which grows with spatial mesh size N. The spectrum of the discretization matrix A is not
easily known and it is typically unbounded as the spatial step goes to zero. This is a primary limitation of the Kassam–Trefe-
then modification because the contour varies from problem to problem, with dependence on the spatial mesh. This limita-
tion makes the technique problem dependent. For example, eigenvalues for diffusive problems are close to the negative real
axis and for dispersive problems they are close to the imaginary axis.

Another recent development in this area is implementation of the second order exponential time differencing scheme to
the magnetohydrodynamic equations in a spherical shell. A variety of different methods including direct computation, con-
tour integration, spectral expansions and recurrence relations are discussed and implemented, see [16].

Main contribution in this article is to develop an alternate solution to these computational difficulties. A second order
ETDRK scheme requires inverting a second degree matrix polynomial where as third and fourth order schemes require
inverting cubic matrix polynomials, which can cause serious numerical instability and computational difficulties because
of the ill-conditioning (see [5, Section 6.2]). We modify Cox–Matthews schemes to the general nondiagonal problems using
Padé approximations of the matrix exponential functions and use splitting technique to construct parallel versions of the
schemes. This approach transforms the matrix polynomial inversion problem into a sum of well-conditioned linear problems
that can be solved in parallel. Our formulation of the modified schemes is generally more accurate for problems with irreg-
ular data and computationally more efficient as compared to the aforementioned ETDRK schemes.

A fourth order L-stable method is constructed using positivity preserving sub-diagonal (0,4)-Padé approximation. To
show the advantage of L-stable method, we have constructed an A-stable method using diagonal (2,2)-Padé approximation.
An algorithm based on the modified schemes is developed and implemented to solve two important problems from financial
mathematics. Heston’s stochastic volatility model with a small nonlinear penalty term is used for pricing American put op-
tions under stochastic volatility. Penalty method was first introduced by Zvan et al. [24] for American options under stochas-
tic volatility. Forsyth and Vetzal [3] proposed an implicit finite difference scheme for valuing American options using the
penalty method. Nielsen et al. [17] presented a refinement of Zvan’s work and illustrated the performance of various numer-
ical schemes using explicit, semi-implicit, and fully implicit methods. Khaliq et al. [12] used linearly implicit predictor–cor-
rector schemes for pricing American options.

Organization of this paper is as follows. In Section 2 we consider an abstract PDE and write its solution using Duhamel’s
principle. Basic time stepping schemes are given in Section 3 and Padé approximations as well as modified schemes are men-
tioned in Section 4. Parallel implementation of these schemes with a parallel algorithm is given in Section 5. Models for pricing
American options and penalty method approach is described in Section 6. Section 7 contains an efficient spatial discretization
approach. Numerical results are discussed in Section 8. Finally we provide some concluding remarks in Section 9.

2. The abstract PDE

We consider the following semilinear initial-boundary value problem:

ut þ Au ¼ Fðu; tÞ in X; t 2 0; t
� �

¼ J;

u ¼ v on oX; t 2 J; uð�;0Þ ¼ u0 in X;
ð2:1Þ

where X is a bounded domain in Rd with Lipschitz boundary, F is a smooth nonlinear function defined on Rd and A denotes a
uniformly elliptic operator,
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The coefficients aj;k and bj are C1 (or sufficiently smooth) functions on X; aj;k ¼ ak;j; b0 P 0, and for some c0 > 0Xd

j;k¼1

aj;knjnk P c0jnj2 on X; for all n 2 Rd: ð2:3Þ

The initial-value problem (2.1) is considered in a Hilbert space H, with A being a linear, self-adjoint, positive definite closed
operator with a compact inverse T, defined on a dense domain DðAÞ �H, see [21] for more details. The operator A could
represent any of fAhg0<h6h0

, obtained from a spatial discretization and H could be an appropriate finite-dimensional
subspace of L2ðXÞ, cf. [19,21].
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