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a b s t r a c t

In the present paper, we propose a Krylov subspace method for solving large and sparse
generalized Sylvester matrix equations. The proposed method is an iterative projection
method onto matrix Krylov subspaces. As a particular case, we show how to adapt the
ILU and the SSOR preconditioners for solving large Sylvester matrix equations. Numerical
examples and applications to some PDE’s will be given.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to present numerical Krylov subspace methods for solving the linear matrix equation

Xq

i¼1

Ai;X;Bi ¼ C; ð1Þ

where Ai 2 Rn�n; Bi 2 Rp�p, i ¼ 1; . . . ; q; C and X 2 Rn�p.
Such problems arise in the solution of large eigenvalue problems [6] and in the boundary value problem. They play also an

important role in linear control and filtering theory for continuous or discrete-time large-scale dynamical systems, image
restoration and other problems; see [2–5,8,11–13,16–19] and the references therein. The matrix equation (1) contains the
well-known Lyapunov, Sylvester and Stein matrix equations.

The linear matrix equation can be written as the following np� np linear system:Xq

i¼1

ðBT
i � AiÞ

" #
vecðXÞ ¼ vecðCÞ; ð2Þ

where vecðXÞ is the vector of Rnp obtained by stacking the columns of the n� p matrix X and � denotes the Kronecker prod-
uct; (F � G ¼ ½fi;jG�). Krylov subspace methods such as the GMRES algorithm [15] could be used to solve the linear system (2).
However, for large problems this approach cannot be applied directly.

In the present paper, we present a global approach for solving the matrix equation (1). Our method uses the global gen-
eralized minimal residual (GlGMRES) method [10] which was originally introduced for solving linear systems with multiple
right-hand sides.

In Section 2, we recall the global generalized minimal residual (GlGMRES) method, show how to apply the GlGMRES
method for solving the matrix equation (1) and give some theoretical results. In Section 3, we a left-right preconditioner
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for large Sylvester matrix equations. Section 4 is devoted to the symmetric successive overrelaxation (SSOR) preconditioning
in association with the GlGMRES algorithm for Sylvester matrix equations. In the last section we give some numerical
experiments.

In this paper, we use the following notations. For X and Y two matrices in Rn�p, we define the following inner product
hX;YiF ¼ trðXTYÞ where trð:Þ denotes the trace and XT the transpose of the matrix X. The associated norm is the well known
Frobenius norm denoted by k � kF . For V 2 Rn�p, the matrix Krylov subspace KkðA;VÞ is the subspace generated by the vectors
(matrices) V ;AV ; . . . ;Ak�1V . Unless specified, the Frobenius norm will be used for matrices and vectors. A system of matrices
of Rn�p is said to be F-orthogonal if it is orthogonal with respect to the scalar product h:; :iF .

2. The global-GMRES method for linear matrix equations

In this section, we present a numerical Krylov subspace method for solving the linear matrix equation (1). Eq. (1) has a
unique solution if and only if the matrix

Pq
i¼1BT

i � Ai is nonsingular. Throughout this paper, we assume that this condition is
verified.

Let M be the operator defined as follows:

M : Rn�p ! Rn�p;

X !
Xq

i¼1

AiXBi:

The transpose of the operator M with respect to the inner product h:; :iF is defined from Rn�p onto Rn�p by
MTðXÞ ¼

Pq
i¼1AT

i XBT
i : Next, we show how to solve iteratively the problem (1) using Krylov subspace methods.

Let V be any n� p matrix and consider the matrix Krylov subspace associated to the pair ðM;VÞ and an integer k defined
by

KkðM;VÞ ¼ spanfV ;MðVÞ; . . . ;Mk�1ðVÞg:

We note that MiðVÞ is defined recursively as MiðVÞ ¼MðMi�1ðVÞÞ. Remark that the matrix Krylov subspace KkðM;VÞ is a
subspace of Rn�p.

The modified global Arnoldi algorithm [10] constructs an F-orthonormal basis V1;V2; . . . ;Vk of the matrix Krylov subspace
KkðM;VÞ, i.e.

hVi;VjiF ¼ di;j; for i; j ¼ 1; . . . ; k;

where di;j denotes the classical Kronecker symbol. The algorithm is described as follows:

Algorithm 1 (Modified Global Arnoldi algorithm).

1. Set V1 ¼ V=kVkF .
2. For j ¼ 1; . . . ; k. doeV ¼MðVjÞ,

for i ¼ 1; . . . ; j. do
hi;j ¼ hVi; eV iF ;eV ¼ eV � hi;jV i;

endfor

hjþ1;j ¼ keVkF ;

Vjþ1 ¼ eV=hjþ1;j:

EndFor.

Let Vk be the n� kp matrix: Vk ¼ ½V1;V2; . . . ;Vk�. eHk denotes the ðkþ 1Þ � k upper Hessenberg matrix whose nonzero
entries hi;j are defined by Algorithm 1 and Hk is the k� k matrix obtained from eHk by deleting its last row. Note that the block
matrixVk is F-orthonormal which means that the matrices V1; . . . ;Vk are orthonormal with respect to the scalar product h�; �iF .

It is not difficult to show the following proposition:

Proposition 1. We have the following relations:

1. ½MðV1Þ; . . . ;MðVkÞ� ¼VkðHk � IpÞ þ Ekþ1, where Ekþ1 ¼ hkþ1;k½0n�p; . . . ;0n�p;Vkþ1�.
2. ½MðV1Þ; . . . ;MðVkÞ� ¼Vkþ1ðeHk � IpÞ.
3. For any ðkþ 1Þ � s matrix G, we have kVkþ1ðG� IpÞkF ¼ kGkF .

Starting from an initial guess X0 2 Rn�p and the corresponding residual R0 ¼ C �MðX0Þ, the global GMRES method de-
fines, at step k, the approximate solution Xk as follows:
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