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a b s t r a c t

In this paper, we introduce and investigate a fractional calculus with an integral operator
which contains the following family of generalized Mittag–Leffler functions:
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in its kernel, ðkÞm being the familiar Pochhammer symbol. A number of corollaries and
consequences of the main results presented here are also considered.
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1. Introduction, definitions and preliminaries

As mentioned in the survey article by Gorenflo and Mainardi [4], even the classical Mittag–Leffler functions have remained,
for a long time, almost totally ignored in the common handbooks on special functions and tables of integral transforms,
although a reasonably adequate description of many of their interesting and potentially useful properties appeared already
in the third volume of the celebrated Bateman Manuscript Project (see Erdélyi et al. [2, Chapter 18]) in a chapter devoted
to Miscellaneous Functions). The Mittag–Leffler functions EaðzÞ and Ea;bðzÞ are defined by the following series:
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and

Ea;bðzÞ ¼
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respectively. These functions are natural extensions of the exponential, hyperbolic and trigonometric functions, since

E1ðzÞ ¼ ez; E2ðz2Þ ¼ cosh z and E2ð�z2Þ ¼ cos z:

For a detailed account of the various properties, generalizations and applications of the Mittag–Leffler functions, the reader
may refer to the recent works by (for example) Džrbašjan [1], Kilbas and Saigo [11], Gorenflo and Mainardi [4], Gorenflo et al.
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([5–7]), Kilbas et al. [13, Chapter 1], and Saigo and Kilbas [17]. The Mittag–Leffler function (1.1) and some of its various gen-
eralizations have only recently been calculated numerically in the whole complex plane (see, for example, [10,19]). By means
of the series representation, a generalization of the Mittag–Leffler function Ea;bðzÞ of (1.2) was introduced by Prabhakar [16]
as follows:
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where (and throughout this investigation) ðkÞm denotes the familiar Pochhammer symbol or the shifted factorial, since

ð1Þn ¼ n! ðn 2 N0Þ;

defined (for k; m 2 C and in terms of the familiar Gamma function) by

ðkÞm :¼ Cðkþ mÞ
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Clearly, we have the following special cases:

E1
a;bðzÞ ¼ Ea;bðzÞ and E1

a;1ðzÞ ¼ EaðzÞ: ð1:5Þ

Indeed, as already observed earlier by Srivastava and Saxena [28, p. 201, Eq. (1.6)], the generalized Mittag–Leffler function
Eq

a;bðzÞ itself is actually a very specialized case of a rather extensively investigated function pWq as indicated below (see also
[13, p. 45, Eq. (1.9.1)]):
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Here, and in what follows, pWq denotes the Wright (or, more appropriately, the Fox–Wright) generalization of the hyper-
geometric pFq function, which is defined by (see, for example, [25, p. 21])
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in which we have assumed, in general, that

aj;Aj 2 C ðj ¼ 1; � � � ; pÞ and bj;Bj 2 C ðj ¼ 1; . . . ; qÞ

and that the equality in the convergence condition holds true only for suitably bounded values of jzj. In fact, we have (see, for
details, [23, p. 19]; see also [13, p. 58 et seq.])

pWq

ða1;1Þ; . . . ; ðap;1Þ;
z

ðb1;1Þ; . . . ; ðbq;1Þ;

2
64

3
75 ¼ Cða1Þ � � �CðapÞ

Cðb1Þ � � �CðbqÞ pFq

a1; . . . ; ap;

z

b1; . . . ; bq;

2
64

3
75 ð1:8Þ

and

pWq

ða1;A1Þ; . . . ; ðap;ApÞ;
z

ðb1; B1Þ; . . . ; ðbq; BqÞ;

2
64

3
75 ¼ H1;p

p;qþ1 �z
ð1� a1;A1Þ; . . . ; ð1� ap;ApÞ

ð0;1Þ; ð1� b1;B1Þ; . . . ; ð1� bq;BqÞ

����
� �

ð1:9Þ

in terms of the familiar F and H functions, respectively.

Remark 1. Throughout this paper, it is tacitly assumed that the complex parameter b in the definitions (1.2) and (1.3) as well
as the complex parameters b1; � � � ; bq in the definition (1.7) are so constrained that no zeros appear in the denominators on
the right-hand sides of (1.2), (1.3) and (1.7).

Remark 2. By recalling the following definition of the classical Riemann–Liouville fractional derivative operator Dl
z (see, for

example, the works by Kilbas et al. [13] and Samko et al. [18]):
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