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a b s t r a c t

We say that X ¼ ½xij�ni;j¼1 is symmetric centrosymmetric if xij ¼ xji and xn�jþ1;n�iþ1;1 6 i; j 6 n.
In this paper we present an efficient algorithm for minimizing kAXBþ CYD� Ek where k � k
is the Frobenius norm, A 2 Rt�n;B 2 Rn�s;C 2 Rt�m;D 2 Rm�s;E 2 Rt�s and X 2 Rn�n is sym-
metric centrosymmetric with a specified central submatrix ½xij�r6i;j6n�r ;Y 2 Rm�m is sym-
metric with a specified central submatrix ½yij�16i;j6p . Our algorithm produces suitable X
and Y such that AXBþ CYD ¼ E in finitely many steps, if such X and Y exists. We show that
the algorithm is stable any case, and we give results of numerical experiments that support
this claim.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let Jn be the n� n order flip matrix with ones on the secondary diagonal and zeros elsewhere. A matrix X 2 Rn�n is said to
be symmetric centrosymmetric if XT ¼ X and JnXJn ¼ X, i.e.,

xj;i ¼ xi;j ¼ xn�jþ1;n�iþ1; 1 6 i; j 6 n;

or symmetric centroskew if XT ¼ X and JnXJn ¼ �X, i.e.,

xj;i ¼ xi;j ¼ �xn�iþ1;n�jþ1; 1 6 i; j 6 n:

Throughout this paper, we denote Sn�n;ASn�n;BSn�n and BASn�n are respectively the set of n� n real symmetric matri-
ces, real skew-symmetric matrices, real symmetric centrosymmetric matrices and real symmetric skew-centrosymmetric.
Let kZk ¼ ðhZ; ZiÞ

1
2 be the Frobenius matrix norm of a matrix Z; hZ; Yi ¼ trðZT YÞ is the associated inner product of Z with a

matrix Y, and trðWÞ denotes the trace of a square matrix W. By using properties of the trace operator, we have that for
any matrices W; Y , and Z; hW; YZi ¼ hYT W; Zi ¼ hWZT ; Yi. Denote Yð½1 : p�Þ by the p order leading principal submatrix of
Y, i.e., Yð½1 : p�Þ ¼ ½yi;j�16i;j6p. Denote

Sn�n �Sm�m ¼ f½M;N�jM 2Sn�n;N 2 Sm�mg:

It is obvious that Sn�n �Sm�m is a linear subspace over the real number field.
Symmetric centrosymmetric matrices arises in many applications, for example, information theory [21], some Markov

processes [22], physics and engineering problems [23], and have been extensively studied; see, e.g., ½1—3;22;23�. Recently
[4–6] there has been interest in the submatrix constraint problem of symmetric centrosymmetric matrices. However, be-
cause of the specified structure, it is unfit for discussing symmetric centrosymmetric matrices under their leading principal
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submatrices constraint, for they destroy the special doubly symmetry. Therefore, we present a concept of central principal
submatrix, which was originally proposed by Yin [7]. The definition is as follows.

Definition 1. Given M 2 Rn�n, if n� q is even, then a q-square central principal submatrix of A, denoted as McðqÞ, is a q-
square submatrix obtained by deleting the first and last ðn� qÞ=2 rows and columns of M, that is McðqÞ ¼ ½mij�n�q

2 6i;j6n�n�q
2

.

It is intuitive and obvious that a matrix of odd (even) order only has central principal submatrices of odd (even) order.
The submatrix constraint problems are originally come from a practical subsystem expansion problem, and have been

thoroughly investigated. For example, Deift and Nanda [8] discussed an inverse eigenvalue problem of a tridiagonal matrix
under a submatrix constraint; Peng and Hu [9] considered an inverse eigenpair problem of a Jacobi matrix under a leading
principal submatrix constraint; Gong [11] discussed antisymmetric solution of AXAT ¼ B for X with a leading principal subm-
atrix constraint. Zhao [10] studied bisymmetric solution of AX ¼ B for X with a central principal submatrix constraint. The
solvability conditions, expressions of general solutions and optimal approximation solution are provided in these papers.
However, to our best knowledge, there is no relative results about discussing simultaneously two different types of subma-
trices constraint associate with the well-known matrix equation [13,16–19]

AXBþ CYD ¼ E: ð1:1Þ

We also should point out that the arbitrary coefficient matrices A;B;C;D and E occurring in practice are usually obtained
from experiments and they may not satisfy the solvability conditions. Therefore, we study the least squares problem. Thus,
the problem can be mathematically formulated as follows.

Problem I. Let t; s;n;m; q; p be six positive integers. Let A 2 Rt�n, R 2 Rn�s;C 2 Rt�m;D 2 Rm�s, E 2 Rt�s and X0 2
BS

q�q; Y0 2 S
p�p. Let

S ¼ fXjX 2 BS
n�n with XcðqÞ ¼ X0g; T ¼ fYjY 2 S

m�m with Yð½1 : p�Þ ¼ Y0g: ð1:2Þ

Find matrix pair ½bX ; bY � 2S�T such that

kAbXBþ CbY D� Ek ¼ min
½X;Y �2S�T

kAXBþ CYD� Ek: ð1:3Þ

We also consider the optimal approximation problem, which occurs frequently in structural identification [25].
Problem II. Let matrix pair ½X�;Y�� 2S�T be given. Let SE denote the solution set of Problem I, find matrix pair

½bX �; bY �� 2 SE such that

kbX� � X�k2 þ kbY � � Y�k2 ¼ n
½bX ;bY �2SE

fkbX � X�k2 þ kbY � Y�k2g:

Our results are natured extension of results obtain in [4–6,12]. These references describe application in which such prob-
lem size. In these papers, inevitably, Moore–Penrose generalized inverses and some complicated matrix decompositions
such as canonical correlation decomposition (CCD) and general singular value decomposition (GSVD) are involved. Because
of the obvious difficulties in numerical instability and computational complexity, those constructional solutions narrow
down their applications. Indeed, it is impractical to find a solution by those formulas if the matrix size is large. In the present
paper we extend and develop the above research, however, in a totally different way.

This paper we are only concerned with iteration method, and the main idea is based on the classical conjugate gradient
least squares method (CGLS) [24] as well as the minimal residual iteration idea proposed in [14]. We first transform Problem
I to an equivalent least squares problem over a linear subspace, it provides a way to construct an algorithm for solving the
equivalent problem. With the proposed algorithm, the required submatrix constraint condition is automatically satisfied if
the initial matrix pair is chosen within a certain set, and a solution can be obtained with finitely many steps. The algorithms
require little work and low storage requirements per iteration. In fact, we need only to compute a residual matrix and update
the iterative solution and gradient matrices linearly in each iteration. We have also verified the algorithm satisfies a mini-
mization property, which ensures that this algorithm possesses a smooth convergence. In addition, the related optimal
approximation problem is also solved. Some numerical results display the efficiency of these algorithms. Moreover, com-
bined with numerical examples, we give some perturbation analysis on the approximation problem, and show that our algo-
rithms is numerical stable associated with the approximation problem.

2. Preliminaries

We first make the following splitting of symmetric centrosymmetric matrix X into smaller submatrices

X ¼

X11 X12 HJn�q
2

XT
12 X22 JqXT

12Jn�q
2

Jn�q
2

H Jn�q
2

X12Jq Jn�q
2

X11Jn�q
2

0BB@
1CCA ð2:1Þ

where X11 2 S
n�q

2 �
n�q

2 ;X12 2 R
n�q

2 �q;H 2 S
n�q

2 �
n�q

2 , and X22 2 BSq�q (the q-square central principal submatrix of X). Actually, be-
cause of the symmetry properties of X, we can partition X into the following form:
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