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a b s t r a c t

In this paper we study a third order Steffensen type method obtained by controlling the
interpolation nodes in the Hermite inverse interpolation polynomial of degree 2. We study
the convergence of the iterative method and we provide new convergence conditions
which lead to bilateral approximations for the solution; it is known that the bilateral
approximations have the advantage of offering a posteriori bounds of the errors. The
numerical examples confirm the advantage of considering these error bounds.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The iterative methods play a crucial role in approximating the solutions of nonlinear equations. The methods with super-
linear convergence offer good approximations with a reduced number of steps. In a series of papers [1–11] the authors obtain
different methods or modifications of some known methods, in order to achieve iterative methods with higher convergence
orders.

The Steffensen, Aitken or Aitken–Steffensen methods lead to sequences having at least order 2 of convergence. A natural
approach to generalize such methods can be obtained with the aid of inverse polynomial interpolation (Lagrange, Hermite,
Taylor, etc.), with controlled interpolation nodes [12–17]. One of the advantages of such methods is the fact that the inter-
polation nodes may be controlled such that the methods offer sequences with bilateral approximations (both from above and
from below) of the solutions. This aspect offers the control of the error at each step [14,16].

In this paper we shall extend a Steffensen type method using the Hermite inverse interpolatory polynomial of degree 2
with two nodes. In [13] we have shown that among all the Steffensen–Hermite methods with two nodes of arbitrary orders,
the optimal efficiency index is attained in the case when one node is simple and the other one is double (see [18] for def-
initions of efficiency index); we have also shown there that the convergence order of this method is 3. Here we provide new
convergence conditions, which offer bilateral approximations of the solution; these are very useful for controlling the error
at each iteration step. In Section 2, we shall study the convergence of this method, and in Section 3 we shall indicate a meth-
od of constructing the auxiliary functions used for controlling the interpolations nodes. Some numerical examples will be
shown in Section 4.

Let c; d 2 R; c < d; f : ½c; d� ! R; g : ½c; d� ! ½c; d� and consider the following equivalent equations:

f ðxÞ ¼ 0; ð1Þ
gðxÞ ¼ x: ð2Þ

As usually, the first order divided difference of f at a; b 2 ½c; d�will be denoted by ½a; b; f �; if a is double, then ½a; a; f � ¼ f 0ðaÞ. For
the second order divided differences we have
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½a; b; e; f � ¼ ½b; e; f � � ½a; b; f �
e� a

; a; b; e 2 ½c; d�

and if a is double, then

½a; a; b; f � ¼ ½a; b; f � � f 0ðaÞ
b� a

:

Let F ¼ f ð½c; d�Þ and assume the following conditions hold:

(A) f 2 C3ð½c; d�Þ and f 0ðxÞ – 0 8x 2 ½c; d�.

By A it follows that f : ½c; d� ! F is invertible so there exists f�1 : F ! ½c; d�.
Let ai 2 ½c; d�; i ¼ 1;2 and bi ¼ f ðaiÞ; i ¼ 1;2; i.e. ai ¼ f�1ðbiÞ, and denote a01 ¼ ðf�1ðb1ÞÞ0 ¼ 1

f 0 ða1Þ
: Consider now the inverse

interpolatory Hermite polynomial having b1 as double node and b2 as simple node, i.e. the second degree polynomial H
determined such that

Hðb1Þ ¼ a1;

H0ðb1Þ ¼ a01;

Hðb2Þ ¼ a2:

ð3Þ

Using the divided differences on multiple nodes, the resulted Hermite polynomial may be expressed in one of the following
equivalent ways [17]:

HðyÞ ¼ a1 þ ½b1; b2; f�1�ðy� b1Þ þ ½b1; b2; b1; f�1�ðy� b1Þðy� b2Þ; ð4Þ
HðyÞ ¼ a1 þ ½b1; b1; f�1�ðy� b1Þ þ ½b1; b1; b2; f�1�ðy� b1Þ2 ð5Þ

or

HðyÞ ¼ a2 þ ½b2; b1; f�1�ðy� b2Þ þ ½b2; b1; b1; f�1�ðy� b2Þðy� b1Þ: ð6Þ

The remainder is given by

f�1ðyÞ � HðyÞ ¼ ½y; b1; b1; b2; f�1�ðy� b1Þ2ðy� b2Þ; y 2 F: ð7Þ

It can be easily seen that the representations given by (4)–(6) verify condition (3).

(B) Assume that Eq. (1) has a solution �x 2 ½c; d�.

By A it follows that the solution �x is unique in ½c; d�.
One has �x ¼ f�1ð0Þ, whence, by (4)–(7), one obtains the following representations for �x:

�x ¼ a1 � ½b1; b2; f�1�b1 þ ½b1; b2; b1; f�1�b1b2 � r; ð8Þ
�x ¼ a1 � ½b1; b1; f�1�b1 þ ½b1; b1; b2; f�1�b2

1 � r ð9Þ

or

�x ¼ a2 � ½b2;b1; f�1�b2 þ ½b2; b1; b1; f�1�b2b1 � r; ð10Þ

where

r ¼ ½0; b1; b1; b2; f�1�b2
1b2: ð11Þ

If in (8), (9) or (10) we neglect the remainder r, one may obtain an approximation for �x, denoted by a3:

a3 ¼ a1 � ½b1; b2; f�1�b1 þ ½b1; b2; b1; f�1�b1b2 ð12Þ

or

a3 ¼ a1 � ½b1; b1; f�1�b1 þ ½b1; b1; b2; f�1�b2
1 ð13Þ

or

a3 ¼ a2 � ½b1; b2; f�1�b2 þ ½b1; b1; b2; f�1�b1b2: ð14Þ
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