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a b s t r a c t

In this work, we comprehensively examine, for the first time in a paper, the EAS2 methods,
which are part of the explicit advanced step-point (EAS) family of methods. The EAS formu-
lae comprise three distinct schemes: EAS1, EAS2 and EAS3. In this paper, we consider the
EAS2 methods, which are meticulously studied and assessed and their superior regions of
absolute stability are presented. Crucially, the computational efficiency of EAS2 is thor-
oughly examined and comparative numerical results are presented with the use of a vari-
able step, variable order EAS2 code. The efficiency of EAS2 is measured against the
established and powerful Adams formulae, as the latter were implemented in the Shampine
and Gordon code. The extensive numerical results provide good evidence that EAS2 is com-
petitive (i.e. faster and more accurate on a majority of test problems) with the well-estab-
lished Adams methods for the numerical solution of non-stiff initial value problems.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

This is part of a series of papers about the EAS schemes: EAS1, EAS2 and EAS3. In [1] we thoroughly investigate the the-
oretical considerations, characteristics and requirements of explicit advanced step-point (EAS) methods and we examine in
detail the EAS1 methods for mildly stiff initial value problems (IVPs). It was expected that [1] would be published prior to the
present article; however this appears not to have been materialised. The purpose of this work is to comprehensively study
and assess, for the very first time, the EAS2 methods. We will examine in detail the EAS2 choice of coefficients and regions of
absolute stability. Most importantly, we will present extensive comparative results where we will examine the EAS2 com-
putational efficiency against the efficiency of Adams formulae (Shampine and Gordon code) for the solution of non-stiff IVPs.

Before the present work and [1], most of the first part of the work on EAS methods and the term ‘‘Explicit Advanced Step-
point” (EAS) methods had appeared in [2]. Prior to the completion of [2], two short and preliminary works appeared [3,4] and
in 2004 paper [5] was published. Interestingly, despite the fact that much work had been done on the EAS methods, until the
publication of the present article, effectively only the general form of the EAS schemes was known. With this and subsequent
papers, we aim to rectify a major gap in the current literature on the EAS schemes. Although there were reasons beyond the
author’s control that had postponed the publication of the present research, naturally, the author assumes full responsibility
for any delay. The second part of the work on EAS methods started with their trigonometric and exponential fitting for k = 1
[6]. Following the same methodology as in [6], the second part of the work continued with the trigonometric fitting to the
Adams predictor–corrector methods (also known as Adams–Bashforth–Moulton methods) [7–13]. The particular type of
trigonometric fitting that was performed on the Adams methods was ‘‘a first” in the literature. As we will see in the following
sections the original Adams methods (not the trigonometrically fitted versions) are directly linked to the present research.

0096-3003/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2008.06.018

* Present address: P.O. Box 61030, Amaroussion, 15110 Athens, Greece.
E-mail address: g.psihoyios@ntlworld.com

Applied Mathematics and Computation 209 (2009) 106–124

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

mailto:g.psihoyios@ntlworld.com
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


Readers who may be interested in the implicit advanced step-point (IAS) methods are referred to [14–19], as this paper deals
solely with explicit advanced step-point (EAS) methods.

This work is organised as follows: In Section 2, we give the EAS methods general form and their local truncation error; in
Section 3, we briefly provide our theoretical accuracy and stability requirements; in Section 4, we examine in some detail the
EAS2 scheme, where we present the choice of coefficients and 12 graphs of the EAS2 regions of absolute stability; in Section
5, we briefly consider the EAS2 implementation and the general non-stiff case; in Section 6, we present our extensive numer-
ical comparative results and in Section 7 we draw some conclusions for this work.

2. The EAS methods formulae

In [20], Shampine and Gordon presented a very successful implementations of the Adams methods based on the very
well-known Adams–Bashforth and Adams–Moulton formulae, used as a Predictor–Corrector (P–C) pair. For the sake of com-
pleteness the P–C pair has the form:

�ynþ1 ¼ yn þ h
Xk

i¼1

ci�1ri�1fn;

ynþ1 ¼ �ynþ1 þ hckrk�f nþ1;

ð1Þ

where �f nþ1 ¼ f ðxnþ1; �ynþ1Þ.
Explicit advanced step-point (EAS) methods belong to a wider class of numerical multistep methods and in order to ob-

tain their general form we first need to assign specific values to certain coefficients of an even more general form (more de-
tails appear in [1]). Finally, we can express the EAS methods in backward difference form as follows:

yðpÞnþk ¼ ynþk�1 þ h
Xk�1

i¼0

cirifnþk�1;

yðpÞnþkþ1 ¼ yðpÞnþk þ h
Xk

i¼0

cirif ðpÞnþk � ckharkf ðpÞnþk;

yðcÞnþk ¼ ynþk�1 þ h
Xk�1

i¼0

cirifnþk�1 þ ckhrkf ðpÞnþk þ h�arkþ1f ðpÞnþkþ1;

ð2Þ

where a and �a are free coefficients.
The EAS corrector yðcÞnþk from (2) has a local truncation error (LTE) given by

LTE � ½�að1þ aÞ þ ck � ðkþ 1Þ�a�ckhkþ2 #f
#y

yðkþ1ÞðxnÞ � ð�a� c�kþ1Þh
kþ2yðkþ2ÞðxnÞ þ 0ðhkþ3Þ; ð3Þ

where c�kþ1 ¼ ckþ1 � ck, is the Adams–Moulton coefficient. For a proof of (3) see [1].
We notice that with the EAS predictor–corrector approach we have two free parameters at our disposal, namely a and ð�aÞ.

We can also see that the Shampine and Gordon code [20] corresponds to a ¼ �a ¼ 0. When a predictor–corrector scheme is
applied in a PECE (prediction–evaluation–correction–evaluation) mode, as it is basically the case with EAS, the LTE of the
corrector may be ‘‘polluted” by that of the predictors. The level of this ‘‘pollution” can be shown by the LTE of the corrector
(3). If we express (3) in terms of elementary differentials [1] we can rewrite the LTE (3) in terms of elementary
differentials:

LTE ¼ ðB1 þ B2Þhkþ2ðelementarydifferentialÞ1 þ B2hkþ2ðelementarydifferentialÞ2
¼ E1hkþ2ðelementarydifferentialÞ1 þ E2hkþ2ðelementarydifferentialÞ2;

)
ð4Þ

where (elementary differential)i, i = 1 or 2, are subsets of all elementary differentials of order (k + 2) and B1, B2 depend on the
free parameters a and �a. Instead of (3) we will be using (4), which is too complicated to estimate in a reliable and economical
way. Hence, we adopted the well-known Fehlberg embedding [21] approach where we estimate and control the error in a
solution which is asymptotically less accurate than the one we actually accept. To do this we use an embedded formula of
the form,

�ynþk ¼ ynþk�1 þ h
Xk�1

i¼0

cirifnþk�1 þ hð~a2 þ ðkþ 1Þ~a1Þrkf ðpÞnþk þ h~a1rkþ1f ðpÞnþkþ1; ð5Þ

where ~a1 and ~a2 are free parameters and (5) is of order k. Now we give the local error of EAS methods [1]:

Local Error � yðcÞnþk � �ynþk ¼ hðck � ~a2 � ðkþ 1Þ~a1Þrkf ðpÞnþk þ hð�a� ~a1Þrkþ1f ðpÞnþkþ1: ð6Þ

3. Accuracy and stability requirements for the EAS methods

The choice of a, �a and ~a1, ~a2 will directly influence the stability and accuracy of our methods, since these same parameters
form the coefficients of the LTE and the local error. However, our research has shown that the simultaneous requirements of
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