
Successive matrix squaring algorithm for computing outer inverses
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In this paper, we derive a successive matrix squaring (SMS) algorithm to approximate an
outer generalized inverse with prescribed range and null space of a given matrix
A 2 Cm�n

r . We generalize the results from the papers [L. Chen, E.V. Krishnamurthy, I. Macle-
od, Generalized matrix inversion and rank computation by successive matrix powering,
Parallel Computing 20 (1994) 297–311; Y. Wei, Successive matrix squaring algorithm for
computing Drazin inverse, Appl. Math. Comput. 108 (2000) 67–75; Y. Wei, H. Wu, J. Wei,
Successive matrix squaring algorithm for parallel computing the weighted generalized
inverse AyMN , Appl. Math. Comput. 116 (2000) 289–296], and obtain an algorithm for com-
puting various classes of outer generalized inverses of A. Instead of particular matrices used
in these articles, we use an appropriate matrix R 2 Cn�m

s , s 6 r. Numerical examples are
presented.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let Cm�n and Cm�n
r denote the set of all complex m� n matrices and all complex m� n matrices of rank r, respectively. In

denotes the unit matrix of order n. By A�, RðAÞ, rankðAÞ and NðAÞwe denote the conjugate transpose, the range, the rank and
the null space of A 2 Cm�n. By Rez and Imz we denote a real and imaginary part of a complex number z, respectively.

For A 2 Cm�n, the set of inner and outer generalized inverses are defined by the following, respectively:

Af1g ¼ fX 2 Cn�mjAXA ¼ Ag; Af2g ¼ fX 2 Cn�mjXAX ¼ Xg:

The set of all outer inverses with prescribed rank s is denoted by Af2gs, 0 6 s 6 r ¼ rankðAÞ. The symbols A� or Að1Þ stand
for an arbitrary generalized inner inverse of A and by Að2Þ we denote an arbitrary generalized outer inverse of A. Also, the
matrix X which satisfies

AXA ¼ A and XAX ¼ X

is called the reflexive g-inverse of A and it is denoted by Að1;2Þ. The set of all reflexive g-inverses is denoted by Af1;2g. Sub-
sequently, the sets of f1;2;3g and f1;2;4g inverses of A are defined by

Af1;2;3g ¼ Af1;2g \ fXjðAXÞ� ¼ AXg;
Af1;2;4g ¼ Af1;2g \ fXjðXAÞ� ¼ XAg:

By Ay we denote the Moore–Penrose inverse of A, i.e. the unique matrix Ay satisfying

AAyA ¼ A; AyAAy ¼ Ay; ðAAyÞ� ¼ AAy; ðAyAÞ� ¼ AyA:
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For A 2 Cn�n the smallest nonnegative integer k such that rankðAkþ1Þ ¼ rankðAkÞ is called the index of A and denoted by
indðAÞ. If A 2 Cn�n is a square matrix with indðAÞ ¼ k, then the matrix X 2 Cn�n which satisfies the following conditions

AkXA ¼ Ak
; XAX ¼ X; AX ¼ XA

is called the Drazin inverse of A and it is denoted by AD. When indðAÞ ¼ 1, Drazin inverse AD is called the group inverse and it
is denoted by A#.

Suppose that M and N are Hermite positive definite matrices of the order m and n, respectively. Then there exists the un-
ique matrix X 2 Cn�m such that

AXA ¼ A; XAX ¼ X; ðMAXÞ� ¼ MAX; ðNXAÞ� ¼ NXA:

The matrix X is called the weighted Moore–Penrose inverse of A, and denoted by X ¼ AyM;N . In particular, if M ¼ Im and N ¼ In,
then AyM;N ¼ Ay.

If A 2 Cn�m and W 2 Cm�n, then the unique solution X 2 Cn�m of the equations

ðAWÞkþ1XW ¼ ðAWÞk; XWAWX ¼ X; AWX ¼ XWA; ð1:1Þ

where k ¼ indðAWÞ, is called the W-weighted Drazin inverse of A and it is denoted by AD;W .
If A 2 Cm�n

r , T is a subspace of Cn of dimension t 6 r and S is a subspace of Cm of dimension m� t, then A has a f2g inverse
X such that RðXÞ ¼ V and NðXÞ ¼ U if and only if

AV � U ¼ Cm

in which case X is unique and we denote it by Að2ÞV ;U .
It is well-known that for A 2 Cm�n, the Moore–Penrose Ay, the weighted Moore–Penrose inverse AyM;N and the weighted

Drazin inverse AD;W can be represented by:

(i) Ay ¼ Að2Þ
RðA�Þ;NðA�Þ,

(ii) AyM;N ¼ Að2Þ
RðA]Þ;NðA]Þ, where A] ¼ N�1A�M,

(iii) AD;W ¼ ðWAWÞð2Þ
RðAðWAÞkÞ;NðAðWAÞkÞ

, where W 2 Cn�n; k ¼ indðWAÞ.

Also, for A 2 Cn�n, the Drazin inverse AD can be represented by:

AD ¼ Að2Þ
RðAkÞ;NðAkÞ

; where indðAÞ ¼ k:

The following representations of {2, 3}, {2, 4}-inverses with prescribed rank s are restated from [11]:

Proposition 1.1. Let A 2 Cm�n
r and 0 < s < r be a chosen integer. Then the following is valid:

(a) Af2;4gs ¼ fðZAÞyZjZ 2 Cs�m; ZA 2 Cs�n
s g.

(b) Af2;3gs ¼ fYðAYÞyjY 2 Cn�s;AY 2 Cm�s
s g.

General representations for various classes of generalized inverses can be found in [4,8,10,12]. Some of these representations
are restated here for the sake of completeness.

Proposition 1.2. Let A 2 Cm�n
r be an arbitrary matrix and A ¼ PQ is a full-rank factorization of A. There are the following general

representations for some classes of generalized inverses:

Af2gs ¼ fFðGAFÞ�1GjF 2 Cn�s;G 2 Cs�m; rankðGAFÞ ¼ sg;

Af2g ¼
[r

s¼0

Af2gs;

Af1;2g ¼ fFðGAFÞ�1GjF 2 Cn�r;G 2 Cr�m; rankðGAFÞ ¼ rg ¼ Af2gr;

Af1;2;3g ¼ fFðP�AFÞ�1P�jF 2 Cn�r ; rankðP�AFÞ ¼ rg;
Af1;2;4g ¼ fQ �ðGAQ �Þ�1GjG 2 Cr�m; rankðGAQ �Þ ¼ rg;
Ay ¼ Q �ðP�AQ �Þ�1P�;

AD ¼ PAl ðQAl APAl Þ�1Q Al ; Al ¼ PAl Q Al ; l P indðAÞ:

For other important properties of generalized inverses see [1,2,6,13]. We will use the following well-known result:

Lemma 1.1 [7]. Let M 2 Cn�n and e > 0 be given. There is at least one matrix norm k � k such that

qðMÞ 6 kMk 6 qðMÞ þ �; ð1:2Þ

where qðMÞ denotes the spectral radius of M.
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