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a b s t r a c t

In this paper, the modified Korteweg–de Vries (mKdV) equation with variable coefficients
(vc-mKdV equation) is investigated via two kinds of approaches and symbolic computa-
tion. On the one hand, we firstly reduce the vc-mKdV equation to a second-order nonlinear
nonhomogeneous ODE using travelling wave-like similarity transformation. And then we
obtain its many types of exact fractional solutions with one travelling wave-like variable
by applying some fractional transformations to the obtained nonlinear ODE. On the other
hand, we reduce the vc-mKdV equation to two nonlinear PDEs with variable coefficients
using the anti-tangent and anti-hypertangent function transformations, respectively. And
then we given its many types of exact solutions with two different travelling wave-like
variables by studying the obtained nonlinear PDE with variable coefficients.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The modified Korteweg–de Vries (mKdV) equation [1–5]

ut þ 6lu2ux þ uxxx ¼ 0; l ¼ �1 ð1:1Þ
is of important significance in many branches of nonlinear science field. When l ¼ 1, (1.1) is called the positive mKdV
equation, while l ¼ �1, (1.1) is called the negative mKdV equation. The well-known Miura transformation [6]: v ¼ ux þ u2

becomes a bridge between (1.1) with l ¼ �1 and the KdV equation: vt � 6vvx þ vxxx ¼ 0. The mKdV equation appears in many
fields such as acoustic waves in certain anharmonic lattices [7], Alfvén waves in a collisionless plasma [8], transmission lines
in Schottky barrier [9], models of traffic congestion [10], ion acoustic solitons [11], elastic media [12], etc. It possesses many
remarkable properties such as Miura transformation, conservation laws, inverse scattering transformation, bilinear transfor-
mation, N-solitons, breather solutions, Bäcklund transformation, Painlevé integrability, Darboux transformation, doubly
periodic solutions, etc. [1–19].

It is also important to study the nonlinear wave equations with variable coefficients. More recently, Pradhan and Panig-
rahi [20] studied the modified KdV equation with variable coefficients

ut þ aðtÞux � bðtÞu2ux þ cðtÞuxxx ¼ 0; ð1:2Þ

and some Jacobi elliptic function solutions with the forms Asnðn;mÞ; Bcnðn;mÞ; C dnðn;mÞ were obtained by reducing (1.2)
to one second-order ODE in the form g00ðxÞ ¼ PgðxÞ þ 2Qg3ðxÞ.

In this paper, we will investigate more types of solutions of (1.2) using some powerful transformations. In Section 2, we firstly
reduce (1.2) to one second-order nonlinear ODE and then obtain some fractional solutions with one travelling wave-like variable.
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In Section 3, we give some exact breather-like and doubly periodic wave-like solutions with two different travelling wave-like
variables using the anti-tangent and anti-hypertangent function transformations and other transformations.

2. Uni-variable travelling wave-like solutions

In this section, we will seek the solution with one travelling wave-like variable nðx; tÞ:

uðx; tÞ ¼ AðtÞw½nðx; tÞ� þ BðtÞ; nðx; tÞ ¼ f ðtÞxþ gðtÞ; ð2:1Þ

where AðtÞ 6� 0; BðtÞ; f ðtÞ; gðtÞ are functions of t to be determined and wðnÞ is a function of n. To determine these functions,
we require that the function wðnðx; tÞÞ satisfies the second-order nonlinear ODE

w00½nðx; tÞ� ¼ kw½nðx; tÞ� þ kw3½nðx; tÞ� þ c; ð2:2Þ

where k; k; c are constants. The substitution of (2.1) into (1.2) along with (2.2) yields a polynomial equation in
xiwjw0s ði; s ¼ 0;1; j ¼ 0;1;2Þ. Setting their coefficients to zero leads to the following set of nonlinear ordinary differential
equations:

AðtÞf 0ðtÞ ¼ 0; B0ðtÞ ¼ 0; A0ðtÞ ¼ 0;

�2A2ðtÞBðtÞbðtÞf ðtÞ ¼ 0;

3kAðtÞcðtÞf 3ðtÞ � A3ðtÞbðtÞf ðtÞ ¼ 0;

AðtÞg0ðtÞ þ AðtÞaðtÞf ðtÞ � AðtÞB2ðtÞbðtÞf ðtÞ þ kAðtÞcðtÞf 3ðtÞ ¼ 0;

8>>>><
>>>>:

from which we have

AðtÞ ¼ A ¼ const; BðtÞ ¼ 0;
bðtÞ
cðtÞ ¼ l ¼ const;

f ðtÞ ¼ A
ffiffiffiffiffiffi
l

3k

r
; gðtÞ ¼ �A

ffiffiffiffiffiffi
l

3k

r Z t

aðsÞ þ klA2

3k
cðsÞ

" #
ds;

ð2:3Þ

Case 1. c ¼ 0.
In this case, (2.2) reduces to the form:

w00½nðx; tÞ� ¼ kw½nðx; tÞ� þ kw3½nðx; tÞ�; ð2:4Þ

from which we have the equivalent form of (2.4)Z
dw½nðx; tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kw2½nðx; tÞ� þ 1
2 kw4½nðx; tÞ� þ n0

q ¼ nðx; tÞ; n0 ¼ const; ð2:40Þ

from whose solutions, Pradhan and Panigrahi [20] had gave some Jaocibi elliptic functions of (1.2). In fact, (2.4) has also other
types of solutions [16,21]. Here we do not consider this case.

Case 2. c 6¼ 0.
In this case, (2.2) is so different from (2.4). By choosing the proper parameters k; k and c, we investigate some types of

solutions of (2.2) using some transformations [22–24] such that the corresponding fractional travelling wave-like solutions
of (1.2) are given by the following families:

Family 1 (Rational wave-like solution). Suppose that (2.2) has the solution wðnðx; tÞÞ ¼ aþbn2ðx;tÞ
dþn2ðx;tÞ , where a; b; d are constants

to be determined. We substitute this expression into (2.2) and balance the coefficients of niðx; tÞ to yields a set of algebraic

equations such that these parameters can be determined by solving the set of equations. Therefore from (2.1) and (2.3) we
get the solution of (1.2):

u1ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffi
� k

3k

r �9kþ 2k2 A
ffiffiffiffil
3k
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x� A

ffiffiffiffil
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Family 2 (Periodic wave-like solutions). Suppose that (2.2) has form solution wðnðx; tÞÞ ¼ aþb sin2ðnðx;tÞÞ
dþsin2ðnðx;tÞÞ

. Similarly, we get the
solution of (1.2):

u2ðx; tÞ ¼
�bdð2dþ 3Þ þ bð2dþ 1Þ sin2 A

ffiffiffiffil
3k

p
x� A

ffiffiffiffil
3k

p R t aðsÞ þ klA2
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ð2dþ 1Þdþ ð2dþ 1Þ sin2 A
ffiffiffiffil
3k

p
x� A

ffiffiffiffil
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p R t aðsÞ þ klA2

3k cðsÞ
h i

ds
n o ; ð2:6Þ

where k ¼ � 4d2þ4dþ3
2dðdþ1Þ ; k ¼ � ð2dþ1Þ2

2db2ðdþ1Þ
.
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