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1. Introduction

Let .7, denote the class of functions f of the form:
f@=2+3 a2 (p<kpkeN={12 .}, ()
n=k
which are analytic in # = %(1), where %(r) = {z: z€ Cand | z | < r}. Also let us put ./ = .1 ,. For analytic functions
flz) = Zm: a,z" and g(z) = Zw: b.Z"(z € u)
n=0 n=0

by f * g we denote the Hadamard product or convolution of f and g, defined by
(f*g) (Z) = Z an,bnz".
n=0

We say that an analytic function f is subordinate to an analytic function g, and write f(z) < g(z), if and only if there exists a
function w, analytic in % such that
w(0)=0, |wE@)|<1(zeu)
and
f2) = go@)z € ).
In particular, if g is univalent in %, we have the following equivalence:
f(2) <g(2) <= f(0)=g(0) and f(u)<g().
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A set E c Cis said to be starlike with respect to a point wy € E if and only if the linear segment joining wy to every other
point w € E lies entirely in E. A set E is said to be convex if and only if it is starlike with respect to each of its points, that is if
and only if the linear segment joining any two points of E lies entirely in E. Let f be analytic and univalent in %. Then f maps %
onto a convex domain if and only if

f@)
Such function f is said to be convex in % (or briefly convex). The condition (2) for convexity was first stated by Study [24].

Now let f(0) = 0 and let f be analytic univalent in %. Then f maps # onto a starlike domain with respect to w, = 0 if and only
if

Re{l +zf”(z)} >0 in%. (2)

#fz) 1+z
f@ “1-z
Such function fis said to be starlike in % with respect to wy = 0 (or briefly starlike). The condition (3) for starlikeness is due
to Nevalinna [15]. It is well known that if an analytic function f satisfies (3) and f(0) = 0, f'(0) # 0, then f is univalent and
starlike in %.
One can alter the conditions (2) and (3) by setting other limitations on the behaviour of zf'(z) /f(z) and of zf"(z) /f'(z) in %.
In this way many interesting classes of analytic functions have been defined (see for instance [7]). Robertson introduced in
[17] the classes &*(a), # (o) of starlike and convex functions of order « < 1, which are defined by

Z}‘(S) 1 +(1]7—22a)z7 Ze%}
:{fey/:Re{zj{; ] >o<,ze@/}, “)

A (o) ={f e zf(2) € 7" ()}
If o € [0; 1), then a function in either of these sets is univalent, if « < 0 it may fail to be univalent. In particular we denote
F0) =", #(0) = 4.
Janowski [8] introduced the class

in . 3)

I (a) = {f S

@)
)

J[1+Az] zf'l(z) 1+Az )
{14_32} .7{]‘6&/.]‘(2) <]+Bz,ze)2l (-1<B<AKL1). (5)
In this paper we take advantage of .#*[}244 to define other class of functions.
Let q,s e No =NU {0}, g < s+ 1. For complex parameters di,...,aq and by,...,b;, (bj#0,-1,-2,..,;j=1,...,s), the
generalized hypergeometric function 4Fs(ay,...,aq; by, ..., bs;2) is defined by
] e n
Fu@r b bzy =3 el 2 gy (6)

n=0 (b1), -+~ (bs), n!

where (1), is the Pochhammer symbol defined by

1 (n=0),
(/L)”_{),(},4’1)"'(24’”71) (neN).

Definition 1. Let % : .o/, — ./, be a operator such that
}V’f(Z) = j[)(ah--~7aq'~,b17---7b5)f(z) = [Zp'qu(al7-~-7aq§bl7-~-7bs§z)} *f(Z),
where (F; is given by (6).
This operator is called the Dziok-Srivastava operator [6]. We observe that for a function f of the form (1), we have
H(@r,..., G by, b)f(2) =27+ AnaZ", (7)
n=k

where

A, = ((11),]71, t (GQ)n—p )
(b1)n—p T (bs)n—p : (Tl - p)'
The Dziok-Srivastava operator #(ay, ..., dq; b1, ..., bs) includes various other linear operators which were considered in
earlier works. Now we show a few of them. For p =s =1 and q = 2 and a, = 1, the Dziok-Srivastava operator becomes the
Carlson-Shaffer operator #:

Z(a1,b1)f (2) = # (a1, 1;01)f (2), 8)
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