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a b s t r a c t

This paper considers the least-squares linear estimation problem of a discrete-time signal
from noisy observations in which the signal can be randomly missing. The uncertainty
about the signal being present or missing at the observations is characterized by a set of
Bernoulli variables which are correlated when the difference between times is equal to a
certain value m. The marginal distribution of each one of these variables, specified by
the probability that the signal exists at each observation, as well as their correlation func-
tion, are known. A linear recursive filtering and fixed-point smoothing algorithm is
obtained using an innovation approach without requiring the state-space model generat-
ing the signal, but just the covariance functions of the processes involved in the observa-
tion equation.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

There are many practical situations in which the signal appears in the observation in a random manner, for instance, sys-
tems where there are intermittent failures in the observation mechanism, fading phenomena in propagation channels, acci-
dental loss of some measurements or inaccessibility of the data at certain times. In this paper the problem of estimating a
discrete-time signal from noisy uncertain observations in which the signal can be randomly missing is considered. To model
the uncertainty, the observation equation, with the usual additive measurement noise, is formulated by multiplying the sig-
nal by a binary random variable taking the values one and zero (i.e. a Bernoulli random variable); the value one indicates that
the signal is present in the observation, whereas the value zero reflects the fact that the signal is missing. So, the observation
equation involves both an additive and a multiplicative noise which models the uncertainty about the signal being present or
missing at each observation.

Using a state-space approach, the state estimation problem in discrete-time linear systems with uncertain observations
has been widely studied under different hypotheses on additive noises involved in the state and observation equations and,
also, under various hypotheses on the multiplicative noise modeling the uncertainty in the observations (see e.g. [5–7] and
references therein). However, in some situations, the state-space model of the signal is not available and another type of
information must be used to address the estimation problem. In the last years, the signal estimation problem from uncertain
observations has been investigated using only the covariance functions of the processes involved in the observation equation
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and algorithms, with a simpler structure than the corresponding ones when the state-space model is known, have been ob-
tained under different hypotheses on the uncertain observation model (see e.g. [3,4] and references therein).

In this paper, we consider the situation of the unknown state-space model; the aim is to construct, using covariance infor-
mation, linear least-squares estimators of discrete-time signals from uncertain observations verifying that the uncertainty in
a time instant k depends only on the uncertainty in the previous time k�m. This model for the uncertainty is more general
than those considered in [3,4] and this special form of correlation allows us to consider models in which the signal cannot be
missing in mþ 1 consecutive observations.

The paper is organized as follows: the next section presents the uncertain observation model and the hypotheses about
the processes involved; in Section 3, the filtering and fixed-point smoothing algorithm is derived under an innovation ap-
proach; formulae to obtain the estimation error covariance matrices, which provide a global measurement of the estimators
performance, are also included in this section. Finally, in Section 4, the algorithm is applied to a simulated observation model
where the signal cannot be missing in mþ 1 consecutive observations, situation which can be covered by the general cor-
relation model considered in the theoretical study.

2. Problem statement

In previous papers on signal estimation using covariance information [1,2], the noisy observation is always assumed to
contain some information from either the current system output or delayed by one sample time. However, in several cases,
observations may contain signal contaminated with noise or noise alone, and only the probability of occurrence of such cases
is available for the estimation [3,4]; this is the context in the present paper.

Namely, we consider that each observation yk is the current n-dimensional random signal, zk, contaminated by additive
noise, vk, with probability pk, or noise alone with probability 1� pk. To describe this uncertainty, the observation is formu-
lated by multiplying the signal by a Bernoulli random variable hk; the value one of this variable indicates that the signal is
present in the observation, whereas the value zero reflects the fact that it is missing; so the observation equation is given by

yk ¼ hkzk þ vk; k P 1: ð1Þ

In some cases, the variables modeling the uncertainty in the observations can be assumed to be independent and, then,
their distribution is fully determined by the probability that each observation contains the signal; in this situation, algo-
rithms for the filtering and fixed-point smoothing problems have been derived in [3].

However, there exist many real situations where this independence assumption is not satisfied; for example, in signal
transmission models with stand-by sensors in which any failure in the transmission is detected immediately and the old sen-
sor is then replaced, thus avoiding the possibility of the signal being missing in two successive observations. This different
situation is analyzed in [4] considering that the Bernoulli variables are correlated at consecutive instants, and the algorithms
derived in [3] are extended to this new context.

In this paper, the aim is to obtain recursive algorithms for the least-squares (LS) linear filtering and fixed-point smoothing
problems using uncertain observations when the uncertainty in a time instant k depends only on the uncertainty in the pre-
vious time k�m; this correlation structure, which allows us to consider certain models where the signal cannot be missing
in mþ 1 consecutive observations, is more general than that considered in [4] and, consequently, the proposed algorithms
generalize those of such paper.

2.1. Model hypotheses

To address the LS linear estimation problem of the signal zk, it is assumed that the processes involved in (1) satisfy the
following hypotheses:

(i) The signal process fzk; k P 1g has zero mean and separable autocovariance function, Kz
k;s ¼ E½zkzT

s � ¼ AkBT
s ; s 6 k,

where Ak and Bs are known n�M matrices for all k; s P 1.
(ii) The noise process fvk; k P 1g is a zero-mean white sequence with known autocovariance function, E½vkvT

k � ¼ Rk.
(iii) The multiplicative noise fhk; k P 1g is a sequence of Bernoulli random variables with E½hk� ¼ �hk and autocovariance

function Kh
k;s ¼ E½ðhk � �hkÞðhs � �hsÞ� ¼ ds;k�mKh

k;k�m, with d denoting the Kronecker delta function; so Kh
k;s vanishes for

jk� sj 6¼ 0;m, but can be nonzero for jk� sj ¼ m.
(iv) The processes fzk; k P 1g, fvk; k P 1g and fhk; k P 1g are mutually independent.

2.2. General expression of the LS linear estimators

To find the LS linear estimator ẑk=L of zk given the observations fy1; . . . ; yLg we use, as in [4], an innovation approach. Spe-
cifically, fy1; . . . ; yLg is transformed to a set of orthogonal vectors, fm1; . . . ; mLg, named innovations, which is equivalent to the
first one in the sense that both sets span the same linear subspace; that is, Lðm1; . . . ; mLÞ ¼Lðy1; . . . ; yLÞ.

The innovation process is constructed by the Gram–Schmidt orthogonalization procedure, using an inductive reasoning.
Since the LS linear estimator of a random vector, when any other information is available, is the expectation of such vector,
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