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a b s t r a c t

The Hirota-Ito approach presented in [R. Hirota, M. Ito, Resonance of solitons in one dimen-
sion, J. Phys. Soc. Jpn. 52(3) (1983) 744–748] for extending fifth-order integrable equations
with a nonvanishing boundary conditions to combined equations is used in this work. The
generalized fifth-order Caudrey-Dodd-Gibbon (CDG) and Lax equations are extended to
combined integrable equations. The Hirota’s bilinear method is used to derive multiple-sol-
iton solutions for the extended KdV–CDG and KdV–Lax equations.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Hirota and Ito [1] investigated the resonance of solitons in one-dimensional space. Three significant conclusions were
made in this work concerning two solitons at the resonant case, near the resonant case, and becoming singular solitons
where sech2 profiles are transmitted with cosech2 profiles through interaction.

The generalized fifth-order KdV (fKdV) equation reads

ut þ au2ux þ auxuxx þ cuu3x þ u5x ¼ 0; ð1Þ

where a; b, and c are arbitrary nonzero and real parameters, and u ¼ uðx; tÞ is a sufficiently smooth function. The fifth-order
KdV equation includes two dispersive terms u3x and u5x. A variety of the fKdV equations can be developed by changing the
real values of the parameters a; b, and c. The most well-known fifth-order KdV equations that will be approached are the
Sawada-Kotera (SK) equation, the Caudrey-Dodd-Gibbon equation [2], the Lax equation [3], the Kaup-Kupershmidt (KP)
equation, and the Ito equation. The derivation of these fifth-order forms are derived from specific bilinear forms of the
so-called Hirota’s D-operators. In this work, we will conduct our study on two of these equations, the Caudrey-Dodd-Gibbon
equation (CDG) [2], and the Lax equation [3].

2. Caudrey-Dodd-Gibbon equation

The Caudrey-Dodd-Gibbon equation (CDG) [2] is given by

ut þ
1
5
a2u2ux þ auxu2x þ auu3x þ u5x ¼ 0; ð2Þ

with uðx; tÞ is a sufficiently often differentiable function. The CDG equation is completely integrable and therefore it admits
multiple-soliton solutions and infinite number of conserved quantities. Moreover, the CDG Eq. (2) possesses the Painlevé
property. Following [1], we consider the CDG equation with a nonvanishing boundary condition
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ujx’�1 ¼ c; ð3Þ

where c is a constant.
The CDG Eq. (2) can be written as

ut þ b
1

15
a2u3 þ auu2x þ u4x

� �
x

¼ 0; ð4Þ

where b is a constant. Following the approach in [1], we replace u by uþ c that will carry out (4) to

ut þ b
1

15
a2ðuþ cÞ3 þ aðuþ cÞu2x þ u4x

� �
x

¼ 0; ð5Þ

so that

ut þ bca u2x þ
1
5
au2 þ 1

5
acu

� �
x

þ b
1

15
a2u3 þ auu2x þ u4x

� �
x

¼ 0: ð6Þ

We next set

c ¼ a
ba

; ð7Þ

and by using the Galilei transformation, to get rid of ux, Eq. (6) becomes

ut þ a u2x þ
1
5
au2

� �
x

þ b
1

15
a2u3 þ auu2x þ u4x

� �
x

¼ 0: ð8Þ

Eq. (8) will be reduced to the KdV equation [4] for b ¼ 0 and for the CDG Eq. (5) for a ¼ 0. Moreover, Eq. (8) is completely
integrable. It is our aim in this work to show that this equation exhibits N-soliton solutions. Eq. (8) has the bilinear form

DxðDt þ aD3
x þ bD5

x Þf � f ¼ 0; ð9Þ

where the customary definition of the Hirota’s bilinear operators D is given by

Dn
t Dm

x a:b ¼ @

@t
� @

@t0

� �n
@

@x
� @

@x0

� �m

aðx; tÞbðx0; t0Þjx0 ¼ x; t0 ¼ t: ð10Þ

The solution uðx; tÞ is defined by

uðx; tÞ ¼ Rðln f Þxx; ð11Þ

where R is a parameter that will be determined. The auxiliary f ðx; tÞ is given by the perturbation expansion

f ðx; tÞ ¼ 1þ
X1
n¼1

�nfnðx; tÞ; ð12Þ

where � is a bookkeeping non-small parameter, and fnðx; tÞ;n ¼ 1;2; . . . are unknown functions that will be determined by
substituting the last equation into the bilinear form and solving the resulting equations by equating different powers of �
to zero.

In what follows we briefly highlight the main features of the Hirota’s bilinear method that will be used in this work
[4–20]. We first substitute

uðx; tÞ ¼ ekx�ct; ð13Þ

into the linear terms of any equation under discussion to determine the dispersion relation between k and c. We then sub-
stitute the single soliton solution

uðx; tÞ ¼ Rðln f Þxx ¼ R
ff2x � ðfxÞ2

f 2
; ð14Þ

into the equation under discussion, where the auxiliary function f is given by

f ðx; tÞ ¼ 1þ f1ðx; tÞ ¼ 1þ eh1 ; ð15Þ

where

hi ¼ kix� cit; i ¼ 1;2; . . . ;N; ð16Þ
and by solving the resulting equation, we determine the numerical value for R [21–30]. The steps are summarized by

(i) For dispersion relation, we use

uðx; tÞ ¼ ehi ; hi ¼ kix� cit: ð17Þ
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