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a b s t r a c t

Recently, a half-dozen remarkably general families of the finite trigonometric sums were
summed in closed-form by choosing a particularly convenient integration contour and
making use of the calculus of residues. In this sequel, we show that this procedure can
be further extended and we find the summation formulae, in terms of the higher order Ber-
noulli polynomials and the ordinary Bernoulli polynomials, for four general families of the
finite cotangent sums.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Recently, a half-dozen remarkably general families of the finite trigonometric sums were summed in closed-form by
choosing a particularly convenient integration contour and making use of the calculus of residues [1–4].

In this sequel, we show that the following families of finite alternating cotangent sums
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as well as the family of sums given in (2.14) below, can be considered in the same way and we find their closed-form sum-
mation formulae in terms of the higher order Bernoulli polynomials and the ordinary Bernoulli polynomials and numbers.

2. Statement of main results

Observe that, throughout the text, we set an empty sum to be zero. We use the floor function bxc, also called the greatest
integer function or integer value, which gives the largest integer less than or equal to x.
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In what follows, we denote by BðmÞn ðxÞ the Bernoulli polynomial of order m and degree n defined by means of the following
generating functions (see, for details, [5, p. 53, et seq.] and [6, Section 1.6])
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For m ¼ 1 we have

BnðxÞ :¼ Bð1Þn ðxÞ; ðn 2 N0Þ; ð2:2Þ

where BnðxÞ is the relatively more familiar (ordinary) Bernoulli polynomial (see, for instance, [5, p. 35, et seq.]). The (ordin-
ary) Bernoulli number Bn is given by

Bn :¼ Bnð0Þ ðn 2 N0Þ: ð2:3Þ

Our results are as follows.

Theorem 1. Let BðmÞn ðxÞ be the Bernoulli polynomial of order m and degree n defined by (2.1) and let BnðxÞ be the Bernoulli
polynomial defined as in (2.2). Let di;j be the Kronecker delta and suppose that fxg ¼ x� bxc where bxc is the greatest integer
function.

Then, the sums S�2nþ1ðq; rÞ in (1.1) are given by
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while the sums C�2nðq; rÞ in (1.2) are given by
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(n 2 N; q is an even positive integer greater than 2; r = 1, . . . ,q � 1).

Theorem 2. Let BðmÞn ðxÞ be the Bernoulli polynomial of order m and degree n defined by (2.1) and let BnðxÞ be the Bernoulli poly-
nomial defined as in (2.2). Then, the sums
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where
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