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a b s t r a c t

In this paper, we consider an epidemic model with the nonlinear incidence of a sigmoidal
function. By mathematical analysis, it is shown that the model exhibits the bistability and
undergoes the Hopf bifurcation and the Bogdanov–Takens bifurcation. By numerical simu-
lations, it is found that the incidence rate can induce multiple limit cycles, and a little
change of the parameter could lead to quite different bifurcation structures.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

It has been found that many epidemiological transmissions are affected by the parasite dose to which host is exposed, and
relationship between the parasite dose and infection rate is often nonlinear [1,6,11,14]. Regoes et al. [19] introduced a non-
linear incidence into the model which describes the interaction between susceptible hosts S, infected hosts I and free par-
asites v:

dS
dt ¼ A0 � dS� gðvÞS;
dI
dt ¼ gðvÞS� ðdþ dÞI;
dv
dt ¼ fI � uv;

8><
>: ð1:1Þ

where A0 is the birth rate of susceptibles, d is the natural death rate of a host, d is the per capita infection-related death rate, f
is the releasing rate of free virus from an infected host, and the rate of infection per host, gðvÞ, is a sigmoidal function:

gðvÞ ¼ ðv=m0Þk

1þ ðv=m0Þk
; k > 1:

Here, m0 denotes the infectious dose at which 50% of the hosts are infected and k measures the slope of the sigmoidal curve
at m0. It is found in [19] that system (1.1) admits multiple endemic equilibria. Furthermore, by numerical simulations, it is
also found that the model has an Allee effect, i.e., the coexistence of a stable uninfected equilibrium and a stable endemic
equilibrium in (1.1).
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The purpose of this paper is the following. First, we simplify (1.1) by assuming the dynamics of parasites is substantially
faster than that of infected hosts. The advantage of this simplification is that we can use more analytical techniques to reveal
the mechanism of the Allee effect and to find more interesting phenomena. Let u� d. If V ¼ uv , model (1.1) becomes

dS
dt ¼ A0 � dS� g V

u

� �
S;

dI
dt ¼ g V

u

� �
S� ðdþ dÞI;

� dV
dt ¼ dðfI � VÞ;

8><
>: ð1:2Þ

where � ¼ d
u� 1. It follows from the quasi-steady-state assumption [19] that system (1.2) can be reduced to:

dS
dt ¼ A0 � dS� bIk

1þbIk S;

dI
dt ¼

bIk

1þbIk S� ðdþ dÞI;

8<
: ð1:3Þ

where b ¼ fk=ðum0Þk. To be more general, we consider the system:

dS
dt ¼ A0 � dS� bIk

1þaIk S;

dI
dt ¼

bIk

1þaIk S� ðdþ dÞI;

8<
: ð1:4Þ

where a and b are two independent positive constants and k is a positive parameter. Then the sigmoidal infection rate in
(1.4) accommodates the infection force:

gðIÞ ¼ bI
1þ I

; ð1:5Þ

which was used by Gumel and Moghadas [9], and the infection force:

gðIÞ ¼ bI2

1þ aI2 ; ð1:6Þ

studied by Ruan and Wang [20]. To our knowledge, studies in literature for epidemic models with the sigmoidal infection
force often assume k ¼ 1 or k ¼ 2. However, parameter k is usually determined empirically as the slope of a Hill plot. From
[16], we know that the best fit to data often gives a non-integer value of k. For this reason, in this paper we assume that
parameter k is a positive real number and study influences of the general incidence on dynamical behaviors of (1.4) when
k varies in ð0;1Þ. Specifically, we will show that a disease-free equilibrium or an endemic equilibrium is globally stable
when k 6 1. For k > 1, we will derive conditions under which the Allee effect occurs, verify the existence of the Hopf bifur-
cation and the existence of the Bogdanov–Takens bifurcation, which means that the model exhibits a homoclinic bifurcation.
Then we will use parameter a and k as bifurcation parameters, which determine the shape of the sigmoidal incidence, to see
how two limit cycles are born and move as the parameters vary. The novelty of our results is that we find that a little change
of parameter k could lead to quite different bifurcation structures.

The organization of this paper is as follows. In the next section, we show that the qualitative behaviors of (1.4) is simple
for k 6 1. Then we analyze conditions for the existence of the Allee effects, the Hopf bifurcation and the Bogdanov–Takens
bifurcation in Section 3. Section 4 presents numerical simulations to indicate patterns of dynamical behaviors and bifurca-
tion structures as parameters vary. The paper ends with a brief discussion.

2. Simple dynamics when k <1

In this section, we show that system (1.4) has the simple dynamics in the sense that an endemic equilibrium is globally
stable whenever it exists and a disease-free equilibrium is globally stable if there is no endemic equilibrium. First, we non-
dimensionalise system (1.4) with the following scaling

S ¼ dþ d
b

� �1
k

x; I ¼ dþ d
b

� �1
k

y; s ¼ ðdþ dÞt:

If t is used to represent s, we obtain

dx
dt ¼ A� cx� xyk

1þmyk ;

dy
dt ¼

xyk

1þmyk � y;

8<
: ð2:1Þ

where

A ¼ b
dþ d

� �1
k 1

dþ d
A0; c ¼ d

dþ d
; m ¼ aðdþ dÞ

b
:
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