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matrices, we introduce two dual extensions of the Faddeev’s algorithm to one-variable
rectangular or singular matrices. Corresponding algorithms for symbolic computing the
Drazin and the Moore-Penrose inverse are introduced. These algorithms are alternative
with respect to previous representations of the Moore-Penrose and the Drazin inverse of
one-variable polynomial matrices based on the Leverrier-Faddeev’s algorithm. Complexity
analysis is performed. Algorithms are implemented in the symbolic computational package
MATHEMATICA and illustrative test examples are presented.
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1. Introduction

As usual, by R™" we denote the set of m x n complex matrices. Similarly, R[s] (resp. R(s)) denotes the polynomials (resp.
rational functions) with real coefficients in the indeterminate s. The set of m x n matrices with elements in R[s] (resp. R(s)) is
denoted by R[s]™" (resp. R(s)™"). By I is denoted an appropriate identity matrix, @ denotes zero matrix of adequate dimen-
sions and by 0 is denoted the zero polynomial. The trace of given square matrix is denoted by Tr(A).

For any matrix A € C™", the following system of matrix equations

(1) AXA=A, (2)XAX=X, (3)(AX)" =AX, (4) (XA =XA

has unique solution with respect to matrix X € R™", known as the Moore-Penrose generalized inverse of matrix A and de-
noted by A'.
Let A € R™" be arbitrary matrix and let k = ind(A). Then the following system of matrix equations

(1% A'XA=A*, (2) XAX =X, (5)AX=XA

has unique solution. This solution is called the Drazin inverse of matrix A and denoted by AP.

The algorithms to calculate the determinant and adjoint polynomials of the matrix inverse (sI — A)~!, known as the resol-
vent of A, are discussed in [3,4,9,25], for example. In Kailath [9], the author gave corresponding algorithms by calling under-
lying formulas as the Leverrier-Souriau-Faddeeva-Frame formulas.
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An extension of the Leverrier-Faddeev algorithm which computes the Moore-Penrose inverse of the constant rectangular
matrix A € C™" is given in [2]. An analogous algorithm for computing the Drazin inverse of a constant, square, possibly sin-
gular matrix A € C™" is introduced in [6].

Computation of the Moore-Penrose inverse of one-variable polynomial and/or rational matrices, based on the Leverrier-
Faddeev algorithm, is investigated in [5,8,11,15,23]. Implementation of this algorithm, in the symbolic computational
language MAPLE, is described in [8]. Algorithm for computing the Moore-Penrose inverse of two-variable rational and
polynomial matrix is introduced in [16]. An effective (quicker and less memory-expensive) algorithm for computing the
Moore-Penrose inverse of one-variable and two-variable sparse polynomial matrix, with respect to those introduced in
[11], is presented in [13]. This algorithm is efficient when elements of the input matrix are sparse polynomials with only
few nonzero addends.

Representations and corresponding algorithms for computing the Drazin inverse of a nonregular polynomial matrix of an
arbitrary degree is introduced in [7,21,23]. These algorithms are also extensions of the Leverrier-Faddeev algorithm. Bu and
Wei in [1] proposed a finite algorithm for symbolic computation of the Drazin inverse of two-variable rational and polyno-
mial matrices. Also, a more effective three-dimensional version of this algorithm is presented in the paper [1]. Implementa-
tion of these algorithms in the programming language MATLAB is also presented in [1].

The algorithm introduced in [22] generalizes the Leverrier-Faddeev algorithm and generates the class of outer inverses of
a rational or polynomial matrix.

An interpolation algorithm for computing the Moore-Penrose inverse of a given one-variable polynomial matrix, based
on the Leverrier-Faddeev method, is presented in [17]. Corresponding algorithms based on the interpolation and Leverri-
er-Faddeev algorithms, for computing the Drazin inverse and outer inverses of one-variable polynomial matrix, are intro-
duced in [18,19], respectively. Algorithms for computing the Moore-Penrose and the Drazin inverse of one-variable
polynomial matrices based on the evaluation-interpolation technique and the discrete Fourier transform (DFT) are intro-
duced in [14]. Corresponding algorithms for two-variable polynomial matrices are introduced in [24].

We are directly motivated by an (independent) approach for computing the usual inverse, which also starts from the
Leverrier-Faddeev’s algorithm, but it is applicable to square invertible one-variable polynomial matrices. This approach is
initiated by Vu in the papers [26,27]. This approach uses derivative of the matrix powers.

Guided by this motivation, we are going to accomplish the following goals:

1. To extend algorithms introduced in [26,27] for the set of rectangular or singular polynomial matrices. In this way we
derive two similar algorithms for computing the Moore-Penrose and the Drazin inverse, respectively;
2. To compare computational complexity and memory space requirements of two different approaches.

In the present paper we will derive an algorithm to calculate the Moore-Penrose and an analogous representation of the
Drazin inverse of one-variable polynomial matrix. These algorithms are alternative to known algorithms for computing the
Moore-Penrose inverse [8,10,11,15] and the Drazin inverse of polynomial matrices [7,12,21,23]. On the other side, these
algorithms generalize algorithms for computing the usual inverse of polynomial matrices, introduced in [26,27].

The paper is organized as follows. The Faddeev’s algorithms for computing the Moore-Penrose inverse and the Drazin
inverse of rational matrices are reviewed in Section 2. The extension algorithms to one-variable rectangular or singular poly-
nomial matrices are derived in Section 3. Two similar algorithm for computing the Drazin inverse and the Moore-Penrose
inverse of polynomial matrices are introduced. Therefore, we implemented our first goal in the third section. In Section 4
we examine complexity analysis of known and introduced algorithms. A comparison between the complexity of introduced
and known algorithms is presented. In this way, we implemented our second goal in the fourth section. Some test examples
from [30] are verified in Section 5 to verify additionally correctness of introduced algorithms.

2. Faddeev’s algorithms for rational matrices

Consider a square matrix constant A € R™". Assume that the characteristic polynomial of A is equal to
a(z) =detfzl, — Al = apz" + ;2" '+ -+ @y_12+ Gy, G =1.

Representation of the Drazin inverse A which is based on the usage of the characteristic polynomial a(z) of the matrix A is
introduced in [6].

The following representation of the Drazin inverse is valid for both rational and polynomial square matrices [7,12,21,23]
and it is derived as a natural extension of the corresponding representation from [6], applicable to constant square matrices.

Lemma 2.1. Consider a nonregular one-variable n x n rational matrix A(s). Assume that
a(z,s) = det[zl, — A(S)] = ap(A)Z" + a1 (A)z" ' + a1 (A)Z + an(A), ao(A) =1, a;(A) €R[s], Z€ R (2.1)
is the characteristic polynomial of A(s). Also, consider the following sequence of n x n polynomial matrices

Bi(A) = ap(A)AGS) + a1 (AAGS) ™ + - ai1(AAGS) + ai(S)ly, ao(A) =1, i=0,...n. (2.2)
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