Extensions of Faddeev's algorithms to polynomial matrices ${ }^{\text {T }}$

Predrag S. Stanimirovića ${ }^{\text {a }}$, Milan B. Tasić ${ }^{\text {a, },}$, Ky M. Vu ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Niš, Faculty of Science and Mathematics, 18000 Niš, Serbia
${ }^{\mathrm{b}}$ AuLac Technol. Inc., Ottawa, Ontario, Canada

A R TICLE IN FO

Keywords:

Leverrier-Faddeev algorithm
Moore-Penrose inverse
Drazin inverse
Polynomial matrices
MATHEMATICA

Abstract

Starting from algorithms introduced in [Ky M. Vu, An extension of the Faddeev's algorithms, in: Proceedings of the IEEE Multi-conference on Systems and Control on September 3-5th, 2008, San Antonio, TX] which are applicable to one-variable regular polynomial matrices, we introduce two dual extensions of the Faddeev's algorithm to one-variable rectangular or singular matrices. Corresponding algorithms for symbolic computing the Drazin and the Moore-Penrose inverse are introduced. These algorithms are alternative with respect to previous representations of the Moore-Penrose and the Drazin inverse of one-variable polynomial matrices based on the Leverrier-Faddeev's algorithm. Complexity analysis is performed. Algorithms are implemented in the symbolic computational package MATHEMATICA and illustrative test examples are presented.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

As usual, by $\mathbb{R}^{m \times n}$ we denote the set of $m \times n$ complex matrices. Similarly, $\mathbb{R}[s]$ (resp. $\mathbb{R}(s)$) denotes the polynomials (resp. rational functions) with real coefficients in the indeterminate s. The set of $m \times n$ matrices with elements in $\mathbb{R}[s]$ (resp. $\mathbb{R}(s))$ is denoted by $\mathbb{R}[s]^{m \times n}\left(\operatorname{resp} . \mathbb{R}(s)^{m \times n}\right)$. By I is denoted an appropriate identity matrix, \mathbb{O} denotes zero matrix of adequate dimensions and by $\mathbf{0}$ is denoted the zero polynomial. The trace of given square matrix is denoted by $\operatorname{Tr}(A)$.

For any matrix $A \in \mathbb{C}^{m \times n}$, the following system of matrix equations
(1) $A X A=A$,
(2) $X A X=X$,
(3) $(A X)^{T}=A X$,
(4) $(X A)^{T}=X A$
has unique solution with respect to matrix $X \in \mathbb{R}^{n \times m}$, known as the Moore-Penrose generalized inverse of matrix A and denoted by A^{\dagger}.

Let $A \in \mathbb{R}^{n \times n}$ be arbitrary matrix and let $k=\operatorname{ind}(A)$. Then the following system of matrix equations
(1 $\left.1^{k}\right) A^{k} X A=A^{k}$,
(2) $X A X=X$,
(5) $A X=X A$
has unique solution. This solution is called the Drazin inverse of matrix A and denoted by A^{D}.
The algorithms to calculate the determinant and adjoint polynomials of the matrix inverse $(s I-A)^{-1}$, known as the resolvent of A, are discussed in [3,4,9,25], for example. In Kailath [9], the author gave corresponding algorithms by calling underlying formulas as the Leverrier-Souriau-Faddeeva-Frame formulas.

[^0]An extension of the Leverrier-Faddeev algorithm which computes the Moore-Penrose inverse of the constant rectangular matrix $A \in \mathbb{C}^{m \times n}$ is given in [2]. An analogous algorithm for computing the Drazin inverse of a constant, square, possibly singular matrix $A \in \mathbb{C}^{n \times n}$ is introduced in [6].

Computation of the Moore-Penrose inverse of one-variable polynomial and/or rational matrices, based on the LeverrierFaddeev algorithm, is investigated in $[5,8,11,15,23]$. Implementation of this algorithm, in the symbolic computational language MAPLE, is described in [8]. Algorithm for computing the Moore-Penrose inverse of two-variable rational and polynomial matrix is introduced in [16]. An effective (quicker and less memory-expensive) algorithm for computing the Moore-Penrose inverse of one-variable and two-variable sparse polynomial matrix, with respect to those introduced in [11], is presented in [13]. This algorithm is efficient when elements of the input matrix are sparse polynomials with only few nonzero addends.

Representations and corresponding algorithms for computing the Drazin inverse of a nonregular polynomial matrix of an arbitrary degree is introduced in [7,21,23]. These algorithms are also extensions of the Leverrier-Faddeev algorithm. Bu and Wei in [1] proposed a finite algorithm for symbolic computation of the Drazin inverse of two-variable rational and polynomial matrices. Also, a more effective three-dimensional version of this algorithm is presented in the paper [1]. Implementation of these algorithms in the programming language MATLAB is also presented in [1].

The algorithm introduced in [22] generalizes the Leverrier-Faddeev algorithm and generates the class of outer inverses of a rational or polynomial matrix.

An interpolation algorithm for computing the Moore-Penrose inverse of a given one-variable polynomial matrix, based on the Leverrier-Faddeev method, is presented in [17]. Corresponding algorithms based on the interpolation and Leverri-er-Faddeev algorithms, for computing the Drazin inverse and outer inverses of one-variable polynomial matrix, are introduced in $[18,19]$, respectively. Algorithms for computing the Moore-Penrose and the Drazin inverse of one-variable polynomial matrices based on the evaluation-interpolation technique and the discrete Fourier transform (DFT) are introduced in [14]. Corresponding algorithms for two-variable polynomial matrices are introduced in [24].

We are directly motivated by an (independent) approach for computing the usual inverse, which also starts from the Leverrier-Faddeev's algorithm, but it is applicable to square invertible one-variable polynomial matrices. This approach is initiated by Vu in the papers $[26,27]$. This approach uses derivative of the matrix powers.

Guided by this motivation, we are going to accomplish the following goals:

1. To extend algorithms introduced in $[26,27]$ for the set of rectangular or singular polynomial matrices. In this way we derive two similar algorithms for computing the Moore-Penrose and the Drazin inverse, respectively;
2. To compare computational complexity and memory space requirements of two different approaches.

In the present paper we will derive an algorithm to calculate the Moore-Penrose and an analogous representation of the Drazin inverse of one-variable polynomial matrix. These algorithms are alternative to known algorithms for computing the Moore-Penrose inverse [8,10,11,15] and the Drazin inverse of polynomial matrices [7,12,21,23]. On the other side, these algorithms generalize algorithms for computing the usual inverse of polynomial matrices, introduced in [26,27].

The paper is organized as follows. The Faddeev's algorithms for computing the Moore-Penrose inverse and the Drazin inverse of rational matrices are reviewed in Section 2. The extension algorithms to one-variable rectangular or singular polynomial matrices are derived in Section 3. Two similar algorithm for computing the Drazin inverse and the Moore-Penrose inverse of polynomial matrices are introduced. Therefore, we implemented our first goal in the third section. In Section 4 we examine complexity analysis of known and introduced algorithms. A comparison between the complexity of introduced and known algorithms is presented. In this way, we implemented our second goal in the fourth section. Some test examples from [30] are verified in Section 5 to verify additionally correctness of introduced algorithms.

2. Faddeev's algorithms for rational matrices

Consider a square matrix constant $A \in \mathbb{R}^{n \times n}$. Assume that the characteristic polynomial of A is equal to

$$
a(z)=\operatorname{det}\left[z I_{n}-A\right]=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}, \quad a_{0}=1
$$

Representation of the Drazin inverse A^{D} which is based on the usage of the characteristic polynomial $a(z)$ of the matrix A is introduced in [6].

The following representation of the Drazin inverse is valid for both rational and polynomial square matrices $[7,12,21,23]$ and it is derived as a natural extension of the corresponding representation from [6], applicable to constant square matrices.
Lemma 2.1. Consider a nonregular one-variable $n \times n$ rational matrix $A(s)$. Assume that

$$
\begin{equation*}
a(z, s)=\operatorname{det}\left[z I_{n}-A(s)\right]=a_{0}(A) z^{n}+a_{1}(A) z^{n-1}+\cdots a_{n-1}(A) z+a_{n}(A), \quad a_{0}(A) \equiv 1, a_{i}(A) \in \mathbb{R}[s], z \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

is the characteristic polynomial of $A(s)$. Also, consider the following sequence of $n \times n$ polynomial matrices

$$
\begin{equation*}
B_{i}(A)=a_{0}(A) A(s)^{i}+a_{1}(A) A(s)^{i-1}+\cdots a_{i-1}(A) A(s)+a_{i}(s) I_{n}, \quad a_{0}(A)=1, i=0, \ldots, n . \tag{2.2}
\end{equation*}
$$

https://daneshyari.com/en/article/4633656

Download Persian Version:
https://daneshyari.com/article/4633656

Daneshyari.com

[^0]: * The authors gratefully acknowledge support from the research project 144011 of the Serbian Ministry of Science.
 * Corresponding author.

 E-mail addresses: pecko@pmf.ni.ac.rs (P.S. Stanimirović), milan12t@ptt.rs (M.B. Tasić), kymvu@aulactechnologies.com (K.M. Vu).

