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a b s t r a c t

This paper presents Haar wavelet approximation to solve a singular integral equation
which has singularities on a diagonal of the domain R ¼ ½�1;1� � ½�1;1�. The singularities
arise basically due to modified Bessel function K0 which appears as a part of the kernel.
Thus the integral equation is weakly (logarithmically) singular only. The problem is solved
considering all the singularities of the kernel and results are examined for approximations
of different orders. Our interest to solve the problem using Haar wavelet basis is due to its
simplicity and efficiency in numerical approximation. The results show convergence trend
as mesh is refined. Comparison is made with some available results obtained earlier by par-
tial consideration of the singularities.
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1. Introduction

The present paper deals with the numerical solution of an integral equation which is encountered while modeling the
flow of a conducting fluid under the influence of a transverse magnetic field. The analytical solution of the problem was given
by Grinberg [1] in terms of Green’s function. After satisfying the boundary conditions the final result boils down to solving an
integral equation which has singularities on the entire line in the domain of interest. An effort was made to obtain the
numerical solution by Singh and Agarwal [2] by taking into account some of singularities and ignoring the rest. In the recent
years, interest has grown in applying wavelet approximations to the unknown functions [3–5]. The main reason appears to
be simplicity and therefore, the efficiency in the numerical computation. Particularly, the Haar wavelet basis leads to very
simple algorithms which converge as the order of approximation is increased. We have tried it for the above problem by
taking into account all the singularities of the kernel and computing results for approximations of various orders.

2. Basic equations and analytical solution

The basic equations of magnetohydrodynamic (MHD) flow problem in a straight channel of square section can be put in
the following nondimensional form [6,7]

Vxx þ Vyy þMBx ¼ �1; ð1Þ
Bxx þ Byy þMVx ¼ 0; ð2Þ
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in the domain R ¼ ½�1;1� � ½�1;1� with the following boundary conditions

V ¼ 0; B ¼ 0 on x ¼ �1; ð3Þ
V ¼ 0; By ¼ 0 on y ¼ �1: ð4Þ

Physically, Vðx; yÞ is the velocity and Bðx; yÞ is the induced magnetic field. The parameter M is called Hartmann number. The
geometry of the problem is explained in Fig. 1 where the walls x ¼ �1 are shown nonconducting while y ¼ �1 as perfectly
conducting. Further details about the physics of the problem are already available in the literature on MHD [2,6,7].

For us Eqs. (1)–(4) comprise a boundary value problem which we wish to solve using wavelet approximation. As ex-
plained in [2] the Eqs. (1) and (2) can be decoupled by the substitution

V þ B ¼ e�axðuþ pÞ � x=2a; ð5Þ
V � B ¼ eaxðv þ qÞ þ x=2a; ð6Þ
with pðx;aÞ ¼ ðeaxch2a� e�axÞ=ð2ash2aÞ; ð7Þ
qðx;aÞ ¼ ðe�axch2a� eaxÞ=ð2ash2aÞ; ð8Þ
a ¼ M=2: ð9Þ

This changes the BVP to

uxx þ uyy ¼ a2u; ð10Þ
and vxx þ vyy ¼ a2v; ð11Þ

with boundary conditions

u ¼ 0; v ¼ 0 on x ¼ �1; ð12Þ
uy ¼ 0; vy ¼ 0 on y ¼ 0; ð13Þ
e�axuy ¼ eaxvy on y ¼ 1; ð14Þ
and e�axuþ eaxv ¼ 2ðch2ax� ch2aÞ=ðash2aÞ; on y ¼ 1: ð15Þ

Note that now the domain is ½�1;1� � ½0;1� due to symmetry about x-axis.
As shown by Grinberg [1] the solutions of (10) and (11) satisfying all boundary conditions except the last one can be ex-

pressed as

uðx; yÞ ¼ 1
2p

Z 1

�1
Gðx; y; tÞFðtÞeatdt; ð16Þ

vðx; yÞ ¼ 1
2p

Z 1

�1
Gðx; y; tÞFðtÞe�atdt; ð17Þ

where FðxÞ ¼ e�axuy ¼ eaxvy; �1 6 x 6 1; ð18Þ
Gðx; y; tÞ ¼

X
m

X
n

ð�1ÞnK0ðarmnÞ; ð19Þ

r2
mn ¼ ½2nþ ð�1Þnx� t�2 þ ½m� 1=2þ ð�1Þmðy� 1=2Þ�2; ð20Þ

and K0 ¼modified Bessel function: ð21Þ

The summations in (19) are over all integral values of m and n. The function Gðx; y; tÞ is the Green’s function for the problem.
Finally, satisfying the last boundary condition we get the integral equation
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Fig. 1. Flow out of paper.
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