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a b s t r a c t

Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2002)
71–84] proposed the class of augmented cubes as a variation of hypercubes and showed
that augmented cubes possess several embedding properties that the hypercubes and
other variations do not possess. Recently, Hsu et al. [H.-C. Hsu, P.-L. Lai, C.-H. Tsai, Geode-
sic-pancyclicity and balanced pancyclicity of augmented cubes, Information Processing
Letters 101 (2007) 227–232] showed that the n-dimensional augmented cube AQ n,
n P 2, is weakly geodesic-pancyclic, i.e., for each pair of vertices u;v 2 AQ n and for each
integer ‘ satisfying maxf2dðu;vÞ;3g 6 ‘ 6 2n where d(u,v) denotes the distance between
u and v in AQ n, there is a cycle of length ‘ that contains a u-v geodesic. In this paper, we
obtain a stronger result by proving that AQn , n P 2, is indeed geodesic-pancyclic, i.e., for
each pair of vertices u;v 2 AQ n and for each integer ‘ satisfying maxf2dðu;vÞ;3g
6 ‘ 6 2n, every u-v geodesic lies on a cycle of length ‘. To achieve the result, we first show
that AQ n � f , n P 3, remains panconnected (and thus is also edge-pancyclic) if f 2 AQ n is
any faulty vertex. The result of fault-tolerant panconnectivity is the best possible in the
sense that the number of faulty vertices in AQn , n P 3, cannot be increased.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

An interconnection network is usually modeled as an undirected simple graph G = (V,E), where the vertex set V = V(G)
denotes the set of processing elements and the edge set E = E(G) denotes the set of communication channels, respec-
tively. For interconnection networks, nicely topological properties enable them to support efficient and robust commu-
nication algorithms. Especially, properties related to cycle embedding have attracted a burst of studies in the literature
(see, for example, [1,7–9,12,19]) because networks with cycle topology are suitable for designing simple algorithms with
low communication costs. Moreover, cycle embeddings are also concerned extensively in many diverse interconnection
networks with faulty elements [4,13–17,20,21]. For more information about the interconnection networks, the reader
can refer to [10,18].

Let G be a graph and u; v 2 VðGÞ be any two vertices. A path (respectively, shortest path) connecting u and v is called
a u-v path (respectively, u-v geodesic). The distance between u and v, denoted by dGðu;vÞ, is the number of edges in a u-v
geodesic. A path (respectively, cycle) that contains every vertex of a graph exactly once is called a hamiltonian path
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(respectively, hamiltonian cycle). A graph G is traceable (respectively, hamiltonian) if it possesses a hamiltonian path
(respectively, a hamiltonian cycle). Recently, properties stronger than hamiltonicity have been widely considered in
many interconnection networks. A graph G is hamiltonian-connected if every two vertices of G are connected by a ham-
iltonian path. A graph G is pancyclic if it contains a cycle of length ‘ (i.e., an ‘-cycle) for each ‘ with 3 6 ‘ 6 jV j. In par-
ticular, G is called vertex-pancyclic (respectively, edge-pancyclic) if every vertex (respectively, edge) of G belongs to an ‘-
cycle for each ‘ with 3 6 ‘ 6 jV j. A graph G is panconnected if, for any two distinct vertices u; v 2 V and for each integer ‘
with dGðu;vÞ 6 ‘ 6 jV j � 1, there is a u-v path of length ‘ in G. The existence of pancyclicity and/or panconnectivity in a
network is even more important because it implies that the network can embed cycles and/or paths with arbitrary
length [4,5].

An enhancement of cycle embedding using geodesic as a part of the cycle was recently suggested by [3]. A pair of
vertices hu;vi in a graph G is said to be geodesic-pancyclic (respectively, weakly geodesic-pancyclic) if for each integer
‘ satisfying maxf2dGðu;vÞ;3g 6 ‘ 6 jV j, every u-v geodesic lies on an ‘-cycle (respectively, there is an ‘-cycle that con-
tains a u-v geodesic). A graph G is called geodesic-pancyclic (respectively, weakly geodesic-pancyclic) if, for every two
vertices u; v 2 VðGÞ, hu; vi is geodesic-pancyclic (respectively, weakly geodesic-pancyclic). Obviously, every geodesic-pan-
cyclic graph is weakly geodesic-pancyclic, and the converse in not true. For instance, the graph shown in Fig. 1a is
weakly geodesic-pancyclic but it is not geodesic-pancyclic, where a geodesic v1v0v3 does not lie on any 5-cycle. In
[3], Chan et al. studied sufficient conditions of geodesic-pancyclic graphs and showed that most of the known sufficient
conditions of panconnected graphs can be applied to geodesic-pancyclic graphs. Note that if a graph G is weakly geo-
desic-pancyclic or panconnected then clearly it is edge-pancyclic. However, both the classes of weakly geodesic-pancy-
clic graphs and panconnected graphs are not identical. A graph G which is panconnected does not have to be weakly
geodesic-pancyclic. For instance, the graph shown in Fig. 1b is panconnected, while there does not exist a 4-cycle con-
taining the unique v1–v4 geodesic v1v0v4. It remains an open question whether every geodesic-pancyclic graph is pan-
connected [3].

In this paper, we study the geodesic-pancyclicity and fault-tolerant panconnectivity for a particular family of intercon-
nection networks called augmented cubes. The augmented cube AQ n, proposed by Choudum and Sunitha [6], is a variation
of hypercubes. Let F be a set of faulty elements in a graph G and G–F denotes the residual graph of G by removing the faulty
elements. Hsu et al. [11] proved that, for n P 4, AQn � F is hamiltonian if jFj 6 2n� 3 and is hamiltonian-connected if
jFj 6 2n� 4, where F is any subset of VðAQnÞ [ EðAQnÞ. Ma et al. [14] showed that AQ n is panconnected for n P 1 and
AQn � F is pancyclic if jFj 6 2n� 3 for every F � EðAQ nÞ and n P 2. Wang et al. [17] showed that AQn � F remains pancyclic
provided jFj 6 2n� 3 for every F � VðAQ nÞ [ EðAQ nÞ and n P 4. In addition, Hsu et al. [12] also proved that AQ n is weakly
geodesic-pancyclic. Note that the term ‘weakly geodesic-pancyclicity’ is named as ‘geodesic-pancyclicity’ in that paper. In
this paper, we obtain a more strong result by proving that AQ n is indeed geodesic-pancyclic for n P 2. To achieve this prop-
erty, a preliminary result shows that AQ n � f , n P 3, is still panconnected if f is any faulty vertex of AQn.

The rest of this paper is organized as follows. Section 2 gives the definition of AQ n and discuss some properties of AQ n.
Section 3 presents the fault-tolerant panconnectivity of AQn. Section 4 proves that AQn is geodesic-pancyclic. The last section
contains our concluding remarks.

2. Structural properties of AQ n

The n-dimension augmented cube AQn (n P 1) has 2n vertices, each vertex is labeled by an n-bit binary string, and can be
defined recursively as follows. AQ1 is a complete graph K2 with the vertex set {0,1}. For n P 2, AQn is constructed by taking
two copies of AQn�1, denoted by AQ 0

n�1 and AQ 1
n�1 with VðAQ k

n�1Þ ¼ fkun�1un�2 . . . u1 : ui 2 f0;1g and 1 6 i 6 n� 1g for
k 2 f0;1g, and adding 2n edges between AQ0

n�1 and AQ 1
n�1 by the following rule. A vertex u ¼ 0un�1un�2 . . . u1 of AQ0

n�1 is
joined to a vertex v ¼ 1vn�1vn�2 . . . v1 of AQ 1

n�1 if and only if either

(i) ui ¼ v i for all 1 6 i 6 n� 1 (in this case, uv is called a hypercube edge), or
(ii) ui ¼ �v i for all 1 6 i 6 n� 1 (in this case, uv is called a complement edge).

Fig. 1. (a) A weakly geodesic-pancyclic graph that is not geodesic-pancyclic; (b) a panconnected graph that is not weakly geodesic-pancyclic.
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