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1. Introduction

Recall [4,10,24,34,43] that a function fis said to be completely monotonic on an interval I if f has derivatives of all orders
on I and

(-1)'f"x) >0, (1)

for x eI and n > 0. Recall also [2,31,34-36] that a positive function f is called logarithmically completely monotonic on an
interval I if f has derivatives of all orders on I and its logarithm Inf satisfies

(-1D)¥Infx)]® >0, ()

for all k € N on I. It has been presented explicitly in [4,31,34,39] that a logarithmically completely monotonic function must
be completely monotonic, but not conversely. In [4, Theorem 1.1] and [12] it is pointed out that the logarithmically com-
pletely monotonic functions on (0, cc0) can be characterized as the infinitely divisible completely monotonic functions studied
by Horn in [13, Theorem 4.4]. In recent years, the notion “logarithmically completely monotonic function” has been adopted
in many articles such as [4,7-9,12,16,18,19,24,28,30,32,33,35,36,40-42,45] and the references therein.
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In order to establish the classical asymptotic relation
I'x+a)

xljg Xa]"(x) =1 (3)
for real a and x, using Holder’s integral inequality, the following double inequality was proved in [44]:
1-a
X I'x+a)
< <
(x + a) Soxal(x) ! @)
for 0<a<1 and x >0, where I'(x) denotes the well known classical Euler’s gamma function I" defined for x > 0 as
rx) :/ e frldt. (5)
0

This inequality can be rewritten for 0 <a<1 and x>0 as

e TX+1) 1y
(X-‘ra) ZWZ .

In [11], along with another line, the following two double inequalities were established forn e N and 0 <s < 1:

F(n+l) > nl—s

exp((1 = $)¥(n+1)] > Fr5 > (7)

and

F(n+1) > nl—s

(n+ 1)175 > m = . (8)

It is clear that the upper bound in inequality (8) is not better and the range in inequality (8) is not larger than the cor-
responding ones in (4) or (6).
Motivated by the paper [11], among other things, the following double inequality was showed for0<s<1and x > 1 in

[14]:
1-s
s\1S T(x+1) 1 1\'?
It is easy to see that inequality (9) refines inequalities (4), (6), (8) and the left hand side inequality in (7).
In [15], a method of obtaining inequalities of the type:

1 T(k+2) 1
(k+a) <m<(k+ﬁ) B (10)
for >0 and k > 0 was presented, where « and B are independent of k.
Inequalities (9) and (10) have been investigated along with two directions.

A standard argument shows that inequality (9) can be rearranged as

s [Ix+1)]70 [1 1
j<{m} -Xx< s+71_§' (11)

Therefore, the first direction is to consider the monotonicity of the general function

1/(t=s)
I'(x+t)
L‘ X+s ] —X, s#t

Zop(x) = § L0
evixts) _x, s=t

in x € (—a,00), where s and t are two real numbers and « = min{s, t}. In [6,10,20,21,27,37], it was obtained that the function
Zs«(x) is either convex and decreasing for |t — s| < 1 or concave and increasing for |t — s| > 1.

The second direction is to consider the monotonicity, complete monotonicity or logarithmically complete monotonicity of
the function

(12)

B o '(X+a)
Hopc(X) = (x+0) T&x+bh) (13)
for x € (—p,0), where a, b and c are real numbers and p = min{a,b,c}. It is clear that
1
———— = Hpgc(X). 14
Hoo o = Moec®) (14)

In [5, Theorems 1 and 3] it was revealed fora + 1 > b > a that H, o (x) is completely monotonic in (max{—a, —c},00) if ¢ < @£=1
and that H,(x) is completely monotonic in (max{—b,—c},c0) if ¢ > a. In [5, Theorem 7] it was demonstrated that H; (x)



Download English Version:

https://daneshyari.com/en/article/4633792

Download Persian Version:

https://daneshyari.com/article/4633792

Daneshyari.com


https://daneshyari.com/en/article/4633792
https://daneshyari.com/article/4633792
https://daneshyari.com

