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Abstract

By using the theory of dynamical systems to a nonlinearly dispersive Schrödinger equation, the existence of solitary
patterns, compactons, smooth and non-smooth periodic patterns and breather solutions is obtained. Under different para-
metric conditions, various sufficient conditions to guarantee existence of the above solutions are given. In some simple con-
ditions, exact explicit and implicit parametric representations of solutions are given.
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1. Introduction

It is well known that the exact solutions of the nonlinearly Schrödinger type equations have been exten-
sively studied in the field of theoretical physics (see [1–3] and cited reference therein).

In this paper, we consider the following nonlinearly dispersive Schrödinger equation (NLS(m, n)equation):

iut þ ðujujn�1Þxx þ lujujm�1 ¼ 0; ð1:1Þ
where n is a positive integer, m is a integer, l = ±1 and i2 = �1. When m = 3, n = 1, (1.1) becomes the usual
nonlinear Schrödinger (NLS) equation:

iut þ uxx þ lujuj2 ¼ 0: ð1:2Þ
We shall use the method of dynamical systems (see [4–9]) to find the exact solutions of (1.1). By considering the
dynamics of the solutions determined by the nonlinear wave systems, we shall generally give all possible
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explicit exact solutions for (1.1) in the different parameter regions by using the elliptic functions and hyper-
bolic functions (see [10]).

To find exact solutions for (1.1), we take the following transformation: u(x, t) = U(x)eirt. Then, (1.1) can be
become the ordinary differential equation:

�rU þ nðn� 1ÞUn�2U 02 þ nU n�1U 00 þ lUm ¼ 0; ð1:3Þ

where ‘‘ 0’’ is the derivative with respect to x.
(1.3) is equivalent to the following system:

dU
dx
¼ y;

dy
dx
¼ 1

nUn�2
ðr� lU m�1Þ � ðn� 1Þ 1

U
y2; ð1:4Þ

which has the first integral

HðU ; yÞ ¼ U 2ðn�1Þy2 � 1

n
2r

nþ 1
Unþ1 � 2l

mþ n
U mþn

� �
: ð1:5Þ

When l = 1, (1.1) is referred to as the focusing (+) branch and is signed as NLSþðm; nÞ equation

iut þ ðujujn�1Þxx þ ujujm�1 ¼ 0: ð1:6Þ

When l = �1, (1.1) is referred to as the focusing (�) branch and is signed as NLS�ðm; nÞ equation:

iut þ ðujujn�1Þxx � ujujm�1 ¼ 0: ð1:7Þ
More recently, Yan Zhenya (see [11]) considered the envelope compactons and solitary patterns of Eq. (1.1).
He stated in [11] that ‘‘when n = 1 and m < 1, NLSþðm; 1Þ equation is shown to possess envelope compactons’’
and ‘‘when n > 1 NLSþðn; nÞ equation has envelope compactons solution’’. But in this paper, we shall show
that NLSþðn; nÞ equation has compacton solution only when n = 2 and NLSþðm; 1Þ equation has no compac-
ton solution.

The rest of this paper is organized as follows. In Section 2, we discuss the bifurcations of phase portraits of
(1.6). Corresponding to all bounded orbits, we give all possible exact explicit parametric representations of the
solutions for Eq. (1.6). In Section 3, we discuss the bifurcations of phase portraits of (1.7). Corresponding to
all bounded orbits, we give all possible exact explicit parametric representations of the solutions for Eq. (1.7).

2. The exact solutions of NLSþðm; nÞ equation

When l = 1, (1.4) and (1.5) become

dU
dx
¼ y;

dy
dx
¼ 1

nUn�2
ðr� U m�1Þ � ðn� 1Þ 1

U
y2 ð2:1Þ

and

HðU ; yÞ ¼ U 2ðn�1Þy2 � 1

n
2r

nþ 1
Unþ1 � 2

mþ n
U mþn

� �
: ð2:2Þ

Let Mðue; 0Þ be the coefficient matrix of the linearized system of (2.1) at an equilibrium point ðue; 0Þ and
Jðue; 0Þ be its Jacobin determinant.

By the theory of planar dynamical systems, we know that for an equilibrium point of a planar integrable
system, if J < 0 then the equilibrium point is a saddle point; if J > 0 and TraceðMðue; 0ÞÞ ¼ 0 then it is a center
point; if J > 0 and ðTraceðMðue; 0ÞÞÞ2 � 4Jðue; 0Þ > 0 then it is a node; if J = 0 and the Poincare index of the
equilibrium point is 0 then it is a cusp. By using the above fact, we have the following results.

(I) When n = 1, (2.1) becomes

dU
dx
¼ y;

dy
dx
¼ rU � U m; ð2:3Þ
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