
Monte Carlo method for solving Fredholm integral equations
of the second kind

R. Farnoosh a,*, M. Ebrahimi b

a Faculty of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
b Department of Mathematics, Slamic Azad University of Karaj Branch, Karaj, Iran

Abstract

In this paper, we present a numerical method based on random sampling for the solution of Fredholm integral equa-
tions of the second kind. This method is a Monte Carlo method based on the simulation of a continuous Markov chain. To
illustrate the usefulness of this technique we apply it to some test problems. Numerical results are performed in order to
show the efficiency and accuracy of the present work.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that Monte Carlo methods are preferable for solving large sparse systems of linear alge-
braic equations, such as those arising from approximations of partial differential equations [1,2]. Such meth-
ods are good for solving integral equations. One of the earliest methods for solving integral equations by a
Monte Carlo method was proposed by Albert [3] and was later developed in [4,5]. In a number of papers
Monte Carlo methods for the computation of integrals depending on a parameter, integral operators and
the solution of integral equations were proposed and studied [6]. Monte Carlo methods are a classical tool
for solving high dimensional integral equations. Basic applications include neutron transport and thermal
radiation can be found in [7–9], respectively.

In this paper, we will consider the following Fredholm integral equation of the second kind:

uðxÞ ¼ f ðxÞ þ k
Z 1

0

kðx; tÞuðtÞdt; k ¼ 1; 0 6 x 6 1; ð1Þ

where the function f(x) 2 L2[0, 1], the kernel k(x, t) 2 L2([0, 1] · [0, 1]) are given and u(x) 2 L2[0, 1] is the
unknown function to be determined.

0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2007.04.097

* Corresponding author.
E-mail addresses: rfarnoosh@iust.ac.ir (R. Farnoosh), mo_ebrahimi@kiau.ac.ir (M. Ebrahimi).

Available online at www.sciencedirect.com

Applied Mathematics and Computation 195 (2008) 309–315

www.elsevier.com/locate/amc

mailto:rfarnoosh@iust.ac.ir
mailto:mo_ebrahimi@kiau.ac.ir


Numerical methods including quadrature, collocation, Galerkin, Petrov Galerkin and Wavelet Petrov
Galerkin methods for Eq. (1) has been studied in [10,11]. Here we want to propose a numerical method based
on random sampling to find an approximation to the unknown function u(x).

Associated with integral Eq. (1) two subproblems can be distinguished. In the first case, we seek to approx-
imate the full solution function u(x) in some way (e.g., by solving on a grid and interpolating or by finite
difference approximation etc.). We call this the problem of global solution. In the second case, we want to
approximate the value u(x0) of the solution in a single point x0 or the value of a functional of u(x), e.g.,
the integral over [0, 1]. This is called the local solution problem [12].

While deterministic numerical methods such as Nyström, collocation, FDM usually aim at solving the glo-
bal problem, the classical Monte Carlo approach is directed to the local solution. Monte Carlo methods are
well understood in this situation and are generally acknowledged to bring advantages (at least for high dimen-
sional problems) over the deterministic approaches.

The Monte Carlo complexity, i.e., the complexity of the stochastic solution of this problem, is analyzed in
[12]. The results show that even in the global case Monte Carlo algorithms can perform better than determin-
istic ones, although the difference is not as large as in the local case.

In the present work, we show how Monte Carlo method can be used to solve linear Fredholm integral equa-
tions. Our idea for solving integral Eq. (1) by a Monte Carlo method is use continuous Markov chain with
state space [0, 1], for simulation.

2. Overview of the method

Eq. (1) may be write in the operational form as

uðxÞ ¼ f ðxÞ þ ðKuÞðxÞ; ð2Þ

or

u ¼ f þ Ku; ð3Þ
where K is an integral operator for the integral in Eq. (1) which maps the function u(x), as an input, into an
output

ðKuÞðxÞ ¼
Z 1

0

kðx; tÞuðtÞdt: ð4Þ

(Ku)(x) is called the first iteration of u with respect to the kernel k. The second iteration is

K½ðKuÞ�ðxÞ ¼ ðK2uÞðxÞ ¼
Z 1

0

Z 1

0

kðx; tÞkðt; t1Þuðt1Þdt dt1: ð5Þ

Proceeding recursively we obtain the nth iteration of u with respect to the kernel k as

K½ðKn�1uÞ�ðxÞ ¼ ðKnuÞðxÞ ¼
Z 1

0

kðx; tn�1ÞKn�1uðtn�1Þdtn�1: ð6Þ

Let us assume that

jKj ¼ sup|{z}
½0; 1�

Z 1

0

jkðx; tÞjdt < 1: ð7Þ

Under this assumption, we can solve (1) by applying the following recursive equation:

uðnþ1Þ ¼ KuðnÞ þ f ; n ¼ 1; 2; . . . : ð8Þ
If u(0)=0 and K0 � 0 then from Eq. (8), we obtain

uðnþ1Þ ¼ f þ Kf þ � � � þ Knf ¼
Xn

m¼0

Kmf : ð9Þ
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