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a b s t r a c t

In this paper using Lyapunov–Krasovskii functional and the linear matrix inequality (LMI)
approach the global asymptotic stability of stochastic recurrent neural networks with
multiple discrete time-varying delays and distributed delays is analyzed. A new sufficient
condition ensuring the global asymptotic stability for delayed recurrent neural networks is
obtained in the stochastic sense using the powerful MATLAB LMI toolbox. Two examples
are provided to illustrate the applicability of the stability results.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of neural networks have been extensively studied in recent years because of their application in many areas
such as associative memory, pattern recognition and optimization [8–10,14]. Many researchers have a lot of contributions to
these subjects. Stability is a basic knowledge for dynamical systems and is useful in the application to the real life systems.
The time delays are commonly encountered in various engineering systems such as chemical processes, hydraulic and rolling
mill systems, etc. In fact, the stability analysis issue for recurrent neural networks with time delays has been an attractive
subject of research in the past few years, where the time delays under consideration can be classified as constant delays,
time-varying delays, and distributed delays. Various sufficient conditions, either delay-dependent or delay-independent,
have been proposed to guarantee the global asymptotic or exponential stability for the recurrent neural networks with time
delays, see example [3–5,7]. In some of the recent publications even though many methods have been exploited, the LMI
approach and M-matrix approach have treated as the emerging methods to study the stability results.

The linear matrix inequality (LMI) technique has been extensively applied to tackle various stability problems of neural
networks and stabilization problems of control systems. The advantages of the stability results based on LMI include that not
only they are easily verified using the interior-point algorithms, but also they consider the neuron’s inhibitory and excitatory
effects on neural networks.

Most of the works on delayed neural networks have dealt with the stability analysis problems for neural networks with
discrete delays. Neural networks has a spatial nature due to the presence of parallel pathways with a variety of axon sizes
and lengths, so it is desirable to model them by introducing unbounded delays. In recent years there has been a growing
research interest in the study of neural networks with distributed delays [16,17,20,22,24,25]. It should be mentioned that
using linear matrix inequality (LMI) approach the sufficient global asymptotic stability conditions have been derived in
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[20,22] for a general class of neural networks with both discrete and distributed delays. Very recently, Zhang et al. [25] stud-
ied global exponential stability for non-autonomous cellular neural networks with unbounded delays. In real nervous sys-
tems, the synaptic transmission is a noisy process brought on by random fluctuations from the release of
neurotransmitters and other probabilistic causes. It has also been known that a neural network could be stabilized or desta-
bilized by certain stochastic inputs [1]. Hence, the stability analysis problem for stochastic neural networks becomes increas-
ingly significant, and some results related to this problem have recently been published, see [1,11,13,18]. So far, there are
only a few papers that have taken stochastic phenomenon into account in neural networks [1,15,18]. Practically, such phe-
nomenon always appears in the electrical circuit design of neural networks. Wang et al. [19,23] were studied the exponential
stability of uncertain stochastic neural networks with discrete and distributed delays and robust stability for stochastic Hop-
field neural networks with time delays. Huang and Cao [12] studied the exponential stability of uncertain stochastic neural
networks with multiple time-varying delays in terms of LMI.

Based on the above discussions, a class of stochastic recurrent neural networks with both multiple time-varying discrete
delays and unbounded distributed delays is considered in this paper. The main purpose of this paper is to study the global
asymptotic stability in the mean square for stochastic recurrent neural networks with both multiple time-varying discrete
delays and unbounded distributed delays. To the best of the authors knowledge there were no global stability results for
stochastic recurrent neural networks with both multiple time-varying discrete delays and unbounded distributed delays.
By using Lyapunov–Krasovskii functional we obtain the sufficient conditions for global asymptotic stability in the mean
square for stochastic recurrent neural networks in terms of linear matrix inequality (LMI), which can be easily calculated
by MATLAB LMI toolbox. We also provide two numerical examples to demonstrate the effectiveness of the proposed stability
results.

2. Problem description and preliminaries

Throughout the manuscript we will use the notation A > 0 ðor A < 0Þ to denote that the matrix A is a symmetric and po-
sitive definite (or negative definite) matrix. The notation AT and A�1 mean the transpose of A and the inverse of a square ma-
trix. If A;B are symmetric matrices A > B ðA P BÞ means that A� B is positive definite (positive semi-definite).

Consider the following neural networks with multiple discrete time-varying and unbounded distributed delays can be
described by the integro-differential equations

x0iðtÞ ¼ �aixiðtÞ þ
Xn

j¼1

bijfjðxjðtÞÞ þ
Xn

j¼1

bðkÞij fjðxjðt � skðtÞÞÞ þ
Xn

j¼1

cij

Z t

�1
kjðt � sÞfjðxjðsÞÞdsþ Ii;

i ¼ 1;2; . . . ; n; k ¼ 1;2; . . . ; r; ð1Þ

where xiðtÞ is the state of the ith neuron at time t, ai > 0 denotes the passive decay rate, bij, bðkÞij and cij are the synaptic con-
nection strengths, fj denotes the neuron activations, Ii is the constant input from outside the system, skðtÞ represents the dis-
crete transmission delay with _skðtÞ 6 gk < 1 and s� ¼maxfskðtÞg and the delay kernel kj is a real valued continuous function
defined on ½0;þ1� and satisfies, for each iZ 1

0
kjðsÞds ¼ 1: ð2Þ

We assume that the neuron activation functions fj, j ¼ 1;2; . . . ;n satisfy the following hypotheses:

(H1) jfjðf1Þ � fjðf2Þj 6 Ljjf1 � f2j for all f1; f2 2 R, f1–f2.
(H2) fj is bounded function for any j ¼ 1;2; . . . ;n.
(H3) 0 6 jfjðf1Þ � fjðf2Þj 6 Ljjf1 � f2j for all f1; f2 2 R, f1–f2.

Assume that x� ¼ ðx�1; x�2; . . . x�nÞ
T is an equilibrium point of Eq. (1). It can be easily verify that the transformation yi ¼ xi � x�i

transforms system (1) into the following system:

y0ðtÞ ¼ �AyðtÞ þ BgðyðtÞÞ þ
Xr

k¼1

BðkÞgðyðt � skðtÞÞÞ þ C
Z t

�1
Kðt � sÞgðyðsÞÞds; ð3Þ

where y ¼ ½y1; y2; . . . ; yn�
T, A ¼ diag½a1; a2; . . . ; an�, B ¼ ½bij�, C ¼ ½cij�, D ¼ ½dij�, Kðt � sÞ ¼ diag½k1ðt � sÞ; k2ðt � sÞ; . . . ; knðt � sÞ�,

gðyÞ ¼ ½g1ðy1Þ; g2ðy2Þ; . . . ; gnðynÞ�
T with gjðyjðtÞÞ ¼ fjðyjðtÞ þ x�j Þ � fjðx�j Þ. Note that since each function fjð�Þ satisfies the hypoth-

esis (H2)–(H3), hence each gjð�Þ satisfies

g2
j ðfjÞ 6 L2

j f
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8fj 2 R;

gjð0Þ ¼ 0:
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