Some optimal error estimates of biharmonic problem using conforming finite element ${ }^{\text {th }}$

Yuan Li, Rong An *, Kaitai Li
Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

In this paper, the $W^{2, p}$-error and L^{p}-error estimates of conforming finite element methods for biharmonic problem are established via weight function technique, where $2 \leqslant p \leqslant+\infty$. Finally, the numerical experiments are provided. © 2007 Elsevier Inc. All rights reserved.

Keywords: Optimal error estimates; Biharmonic problem; Finite element approximation

1. Introduction

About 30 yeas ago, many scholars began to investigate the max-norm error estimates of second order Poisson equation

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathrm{R}^{2}
$$

with Dirichlet boundary

$$
u=0 \quad \text { on } \partial \Omega
$$

when Ω was partitioned by regular mesh and irregular mesh, such as $[1-11]$ and references therein. First, Nitsche in [1] gave

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{2}|\ln h|^{\frac{3}{2}}|u|_{2, \infty} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{1, \infty} \leqslant c h|\ln h \| u|_{2, \infty} \tag{2}
\end{equation*}
$$

by the method of weight function for linear finite element. But it is obvious that (1) and (2) are not of optimal order. Subsequently, Nitsche in [2] improved the estimate (1) and showed

[^0]\[

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{2}|\ln h \| u|_{2, \infty} \tag{3}
\end{equation*}
$$

\]

Fried in [3] gave an example based on radial symmetry which implied that the estimate (3) maybe was of optimal order. Hence, it is difficulty to remove the factor $|\ln h|$ in (3). However, the logarithmic factor in (2) can be removed. Rannacher and Scott in [4] improved the estimate (2) and obtained some optimal error estimates

$$
\begin{cases}\left\|u-u_{h}\right\|_{1, p} \leqslant c h\|u\|_{2, p} & 2 \leqslant p \leqslant+\infty \tag{4}\\ \left\|u-u_{h}\right\|_{0, q} \leqslant c h^{2}\|u\|_{2, q} & 2 \leqslant q<+\infty\end{cases}
$$

In particular, for high order finite element, the factor $|\ln h|$ in (1) and (3) disappeared and optimal max-norm error estimates were established

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{2}\|u\|_{2, \infty} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{1, \infty} \leqslant c h\|u\|_{2, \infty} . \tag{6}
\end{equation*}
$$

See [1] for more details. Moreover, if the domain Ω was partitioned by irregular mesh, Scott in [5] showed that (5) was also true.

Similar results have been obtained for second order nonlinear problems. Frehse and Rannacher in [6] obtained

$$
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{2}|\ln h \| u|_{2, \infty}
$$

for linear finite element approximation and in [7]

$$
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{m}
$$

for high order $m \geqslant 3$ finite element approximation. If $\Omega \subset \mathrm{R}^{N}, N \geqslant 3$, they in [6] proved

$$
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{2}|\ln h|^{\frac{N}{4}+1}|u|_{2, \infty} .
$$

We refer the reader to [8-12] for other similar results.
However, to our best knowledge, it is vacant for max-norm error estimate of high order problem. Therefore, in this paper, we deal with the biharmonic problem

$$
\Delta^{2} u=f(x) \quad \text { in } \Omega \subset \mathrm{R}^{2}
$$

with Dirichlet boundary

$$
u=\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega .
$$

We will extend the method in [4] to fourth order problem and show some optimal estimates

$$
\begin{cases}\left\|u-u_{h}\right\|_{2, p} \leqslant c h^{2}\|u\|_{4, p}, & 2 \leqslant p \leqslant+\infty \tag{7}\\ \left\|u-u_{h}\right\|_{0, q} \leqslant c h^{4}\|u\|_{4, q}, & 2 \leqslant q<+\infty\end{cases}
$$

by conforming finite element approximation. If $q=+\infty$, we will show

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0, \infty} \leqslant c h^{3}|u|_{4, \infty} \tag{8}
\end{equation*}
$$

which is not optimal. But the proof in regular triangular partition is much complicated than in quadrilateral partition. In particular, if $p=q=2$, it is well-known that the estimate (7) is true (cf. [13]).

This paper is organized as follows: in Section 2, we give some preliminary knowledge and define finite element subspace when Ω is partitioned by regular quadrilaterals; in Section 3, a stability theorem is established; in Section 4, we will prove the error estimates (7) and (8); in Section 5, the case when Ω is decomposed into regular triangles is discussed; in Section 6, the numerical experiments are provided.

Throughout this paper, the symbol c always denotes a positive constant and is independent of h. Moreover, it maybe is different even in the same formulation.

https://daneshyari.com/en/article/4634268

Download Persian Version:
https://daneshyari.com/article/4634268

Daneshyari.com

[^0]: * Supported by the Nature Science Foundation of China (Grant No. 50306019, No. 10571142, No. 10471110 and No. 10471109).
 * Corresponding author.

 E-mail address: anrong@mail.xjtu.edu.cn (R. An).

