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Abstract

The nonlinear complementarity problem (denoted by NCP(F)) has attracted much attention due to its various applica-
tions in economics, engineering and management science. In this paper, we propose a smoothing Broyden-like method for
solving nonlinear complementarity problem. The algorithm considered here is based on the smooth approximation
Fischer–Burmeister function and makes use of the derivative-free line search rule of Li in [D.H. Li, M. Fukushima, A
derivative-free line search and global convergence of Broyden-like method for nonlinear equations, Optim. Meth. Software
13(3) (2000) 181–201]. We show that, under suitable conditions, the iterates generated by the proposed method converge to
a solution of the nonlinear complementarity problem globally and superlinearly.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction and algorithm

The nonlinear complementarity problem [2–4] is to find a vector x 2 Rn such that

x P 0; F ðxÞP 0; xTF ðxÞ ¼ 0: ð1:1Þ
where F :Rn! Rn is a given function. Throughout this paper, we assume that F is continuously differentiable
P0-function.

It is well knows that NCP(F) is equivalent to system of equations in the form of

UðxÞ ¼ 0; ð1:2Þ
where U :Rn! Rn is a semismooth function. Such a function can be obtained, for example, by Fischer–Bur-
meister function:
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It is easy to show that /FB(a,b) = 0 holds if and only if a P 0, b P 0 and ab = 0. Fischer–Burmeister function
is differentiable at every point except the origin point and is semismooth at the origin point. By introducing a
smoothing parameter, we obtain a smoothing Fischer–Burmeister function

/ðl; a; bÞ ¼ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ l2

q
; ð1:4Þ

where l is a nonnegative parameter. It is clear that /(0,a,b) = /FB(a,b).
Next, we recall some useful definitions and results.

Definition 1.1

(1) A matrix M 2 Rn is said to be a P0-matrix if all its principal minors are nonnegative.
(2) A function F :Rn! Rn is said to be a P0-function if for all x,y 2 Rn with x 5 y, there exists an index

i0 2 N such that

xi0 6¼ yi0 ; ðxi0 � yi0Þ½F i0ðxÞ � F i0ðyÞ�P 0:

Lemma 1.1. Let l > 0 and the function / :R++ · R2 be defined by (1.4). Let {ak}, {bk} be any two sequences such

that ak,bk! +1 or ak!�1 or bk!�1. Then For any (l, a,b) 2 R++ · R2, we have j/(l, ak,bk)j ! +1.

Proof. The proof can be founded in Ref. [5]. h

Let z ¼ ðl; xÞ 2 Rþþ � Rn and

HðzÞ ¼ Hðl; xÞ ¼
l

UðzÞ

� �
; ð1:5Þ

where

UðzÞ :¼ Uðl; xÞ ¼

/ðl; x1; F 1ðxÞÞ
..
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0
BB@

1
CCA: ð1:6Þ

Thus, NCP(F) (1.1) is equivalent to the following equation:

HðzÞ ¼ 0 ð1:7Þ
in the sense that their solution sets are coincident.

By simple calculation, it is not difficult to see that H(Æ) is continuously differentiable at any
z = (l,x) 2 R++ · Rn with its Jacobian

H 0ðzÞ ¼
1 0

vðzÞ D1ðzÞ þ D2ðzÞF 0ðxÞ

� �
; ð1:8Þ

where

vðzÞ :¼ vecfviðzÞ ¼ /0lðl; xi; F iðxÞÞ : i 2 Ng;
D1ðzÞ :¼ diagfa1ðzÞ; a2ðzÞ; . . . ; anðzÞg;
D2ðzÞ :¼ diagfb1ðzÞ; b2ðzÞ; . . . ; bnðzÞg
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