

Available online at www.sciencedirect.com

Applied Mathematics and Computation 198 (2008) 592–604

www.elsevier.com/locate/amc

A globally and superlinearly convergent smoothing Broyden-like method for solving nonlinear complementarity problem

Changfeng Ma^{a,b,*}, Linjie Chen^a, Desheng Wang^c

^a School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China ^b School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guangxi 541004, China ^c Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 631665, Singapore

Abstract

The nonlinear complementarity problem (denoted by $NCP(F)$) has attracted much attention due to its various applications in economics, engineering and management science. In this paper, we propose a smoothing Broyden-like method for solving nonlinear complementarity problem. The algorithm considered here is based on the smooth approximation Fischer–Burmeister function and makes use of the derivative-free line search rule of Li in [D.H. Li, M. Fukushima, A derivative-free line search and global convergence of Broyden-like method for nonlinear equations, Optim. Meth. Software 13(3) (2000) 181–201]. We show that, under suitable conditions, the iterates generated by the proposed method converge to a solution of the nonlinear complementarity problem globally and superlinearly. $© 2007 Elsevier Inc. All rights reserved.$

Keywords: Nonlinear complementarity problem; Smoothing Broyden-like method; Global convergence; Superlinear convergence

1. Introduction and algorithm

The nonlinear complementarity problem [\[2–4\]](#page--1-0) is to find a vector $x \in R^n$ such that

$$
x \geqslant 0, \quad F(x) \geqslant 0, \quad x^{\mathrm{T}}F(x) = 0. \tag{1.1}
$$

where $F: \mathbb{R}^n \to \mathbb{R}^n$ is a given function. Throughout this paper, we assume that F is continuously differentiable P_0 -function.

It is well knows that $NCP(F)$ is equivalent to system of equations in the form of

$$
\Phi(x) = 0,\tag{1.2}
$$

where $\Phi: R^n \to R^n$ is a semismooth function. Such a function can be obtained, for example, by Fischer–Burmeister function:

^{*} Corresponding author. Address: School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China. E-mail address: macf@fjnu.edu.cn (C. Ma).

^{0096-3003/\$ -} see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.08.057

$$
\phi_{FB}(a, b) = a + b - \sqrt{a^2 + b^2}
$$

and

$$
\Phi(x) = \begin{pmatrix} \phi_{FB}(x_1, F_1(x)) \\ \vdots \\ \phi_{FB}(x_n, F_n(x)) \end{pmatrix} . \tag{1.3}
$$

It is easy to show that $\phi_{FB}(a,b) = 0$ holds if and only if $a \ge 0$, $b \ge 0$ and $ab = 0$. Fischer–Burmeister function is differentiable at every point except the origin point and is semismooth at the origin point. By introducing a smoothing parameter, we obtain a smoothing Fischer–Burmeister function

$$
\phi(\mu, a, b) = a + b - \sqrt{a^2 + b^2 + \mu^2},\tag{1.4}
$$

where μ is a nonnegative parameter. It is clear that $\phi(0, a, b) = \phi_{FB}(a, b)$.

Next, we recall some useful definitions and results.

Definition 1.1

- (1) A matrix $M \in \mathbb{R}^n$ is said to be a P_0 -matrix if all its principal minors are nonnegative.
- (2) A function $F: \mathbb{R}^n \to \mathbb{R}^n$ is said to be a P_0 -function if for all $x, y \in \mathbb{R}^n$ with $x \neq y$, there exists an index $i_0 \in N$ such that

$$
x_{i_0} \neq y_{i_0}, \quad (x_{i_0} - y_{i_0})[F_{i_0}(x) - F_{i_0}(y)] \geq 0.
$$

Lemma 1.1. Let $\mu > 0$ and the function $\phi : R_{++} \times R^2$ be defined by (1.4). Let $\{a_k\}$, $\{b_k\}$ be any two sequences such that $a_k, b_k \to +\infty$ or $a_k \to -\infty$ or $b_k \to -\infty$. Then For any $(\mu, a, b) \in R_{++} \times R^2$, we have $|\phi(\mu, a_k, b_k)| \to +\infty$.

Proof. The proof can be founded in Ref. [\[5\].](#page--1-0) \Box

Let
$$
z = (\mu, x) \in R_{++} \times R^n
$$
 and
\n
$$
H(z) = H(\mu, x) = \begin{pmatrix} \mu \\ \Phi(z) \end{pmatrix},
$$
\n(1.5)

where

$$
\Phi(z) := \Phi(\mu, x) = \begin{pmatrix} \phi(\mu, x_1, F_1(x)) \\ \vdots \\ \phi(\mu, x_n, F_n(x)) \end{pmatrix} .
$$
\n(1.6)

Thus, NCP(F) [\(1.1\)](#page-0-0) is equivalent to the following equation:

$$
H(z) = 0\tag{1.7}
$$

in the sense that their solution sets are coincident.

By simple calculation, it is not difficult to see that $H(\cdot)$ is continuously differentiable at any $z = (\mu, x) \in R_{++} \times R^n$ with its Jacobian

$$
H'(z) = \begin{pmatrix} 1 & 0 \\ v(z) & D_1(z) + D_2(z)F'(x) \end{pmatrix},
$$
\n(1.8)

where

$$
v(z) := \text{vec}\{v_i(z) = \phi'_{\mu}(\mu, x_i, F_i(x)) : i \in N\},
$$

\n
$$
D_1(z) := \text{diag}\{a_1(z), a_2(z), \dots, a_n(z)\},
$$

\n
$$
D_2(z) := \text{diag}\{b_1(z), b_2(z), \dots, b_n(z)\}
$$

Download English Version:

<https://daneshyari.com/en/article/4634469>

Download Persian Version:

<https://daneshyari.com/article/4634469>

[Daneshyari.com](https://daneshyari.com)