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Abstract

By employing Krasnoselskii fixed point theorem, we investigate the existence of multiple positive periodic solutions for
a class of state-dependent delay functional differential equations with feedback control. The system considered in this
paper is more general and incorporates as special cases various problems which have been studied extensively in the liter-
ature. Moreover, some easily verifiable sufficient criteria are established.
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1. Introduction

Let R = (�1, +1), R+ = [0, +1), R� = (�1, 0] and Rn
þ ¼ fðx1; . . . ; xnÞT : xi P 0; 1 6 i 6 ng, respec-

tively. For each x = (x1, x2, . . . , xn)T 2 Rn, the norm of x is defined as jxj0 ¼
Pn

i¼1jxij. Let BC denote the
Banach space of bounded continuous functions / : R! Rn with the norm k/k ¼ suph2R

Pn
i¼1j/iðhÞj, where

/ = (/1, /2, . . . , /n)T.
Recent years have witnessed increasing interest in ecosystem with feedback controls [2,3,5–9,11,12]. The

reasons for introducing control variables are based on main two points. On one hand, ecosystem in the real
world are continuously distributed by unpredictable forces which can results in changes in the biological
parameters such as survival rates. Of practical interest in ecology is the question of whether or not an ecosys-
tem can withstand those unpredictable disturbances which persist for a finite period of time. In the language of
control variables, we call the disturbance functions as control variables (for more details, one can see [6]). On
the other hand, in the literature, it has been proved that, under certain conditions, some species are perma-
nence but some are possible extinction in the competitive system, for example, see [1]. In order to search
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for certain schemes to ensure all the species coexist, feedback control variables should be introduced to
ecosystem.

Compared with advanced in the area of studying the existence of a unique periodic solution [3–5,7–9,12],
less progress has been achieved in studying the existence of multiple periodic solutions, only several papers
concern this subject, see [13–15]. It is worth mentioning that one of effective approaches to fulfill such a prob-
lem is employing fixed point theorem, and some prior estimations of possible periodic solutions are obtained.
In the present paper, by utilizing the fixed point theorem due to Krasnoselskii, we aim to study the existence of
multiple periodic solutions. Using the work of [8] as our starting point, we proceed to develop more results in
state-dependent delay functional equations with feedback controls, which is formulated as follows:

_xðtÞ ¼ Aðt; xðtÞÞxðtÞ þ f ðt; xt; xðt � sðt; xðtÞÞÞ; uðt � aðtÞÞÞ;
_uðtÞ ¼ Bðt; xðtÞÞuðtÞ þ Cðt; xðtÞÞxðhðt; xðtÞÞÞ;

�
ð1:1Þ

where A(t, x(t)) = diag[a1(t, x(t)), . . . , an(t, x(t))], B(t, x(t)) = diag[b1(t, x(t)), . . . , bn(t, x(t))], C(t, x(t)) = di-
ag[c1(t, x(t)), . . . , cn(t, x(t))], ai, bi, ci 2 C(R · R, R),a 2 C(R, R) are x-periodic, s(t, y),h(t, y) 2 C(R · Rn, R)
satisfy s(t + x, y) = s(t, y), h(t + x, y) = h(t, y) for all t 2 R, y 2 Rn. f = (f1, f2, . . . , fn)T, f(t, xt, y, z) is a func-
tion defined on R · BC · Rn · Rn and f(t + x, xt+x, y, z) = f(t, xt, y, z) whenever x is x-periodic. If x 2 BC,
then xt 2 BC for any t 2 R, where xt is defined by xt(h) = x(t + h) for h 2 R.

To conclude this section, we summarize in the following related definition and the famous fixed point the-
orem that will be needed in our arguments.

Definition. Let X be Banach space and E be a closed, nonempty subset of X, E is said to be a cone if

(i) au + bv 2 E for all u, v 2 E and all a, b > 0,
(ii) u, �u 2 E imply u = 0.

Lemma 1.1 (Krasnoselskii fixed point theorem [10]). Let X be a Banach space, and let E be a cone in X. Sup-
pose X1 and X2 are open subsets of X such that 0 2 X1 � �X1 � X2. Suppose that

T : E \ ðX2 n X1Þ ! E

is a completely continuous operator and satisfies either

(i) kTxkP kxk for any x 2 E \ oX1 and kTxk 6 kxk for any x 2 E \ oX2; or

(ii) kTxk 6 kxk for any x 2 E \ oX1 and kTxkP kxk for any x 2 E \ oX2.

Then T has a fixed point in E \ ðX2 n X1Þ.

2. Preliminaries

In this section, we make some prepare for next section.

Lemma 2.1. (x(t), u(t))T is an x-periodic solution of (1.1) if and only if it is also an x-periodic solution of the

following system:

_xðtÞ ¼ Aðt; xðtÞÞxðtÞ þ f ðt; xt; xðt � sðt; xðtÞÞÞ; uðt � aðtÞÞÞ;

uðtÞ ¼
Z tþx

t
Gðt; sÞCðs; xðsÞÞxðhðs; xðsÞÞÞds :¼ ðUxÞðtÞ

ð2:1Þ

where

Gðt; sÞ ¼ diag½G1ðt; sÞ;G2ðt; sÞ; . . . ;Gnðt; sÞ�;
and

Giðt; sÞ ¼
expf�

R s
t biðr; xðrÞÞdrg

expf�
R x

0
biðr; xðrÞdrg � 1

; s 2 ½t; t þ x�; 1 6 i 6 n: ð2:2Þ
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