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Abstract

We develop Heatlets, the fundamental solutions of heat equation using wavelets, for numerically solving inhomoge-
neous and homogeneous initial value problems of diffusion equation on unbounded domains. Unlike finite difference
and finite element methods, diffusion into an infinite medium is satisfied analytically, avoiding the need for artificial bound-
ary conditions on a finite computational domain. The approach is applied to a number of examples and the numerical
results confirm the theoretical findings.
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1. Introduction

The study of heat equation on unbounded domains arises in the modeling of a variety of physical and engi-
neering applications. Finding the numerical solution to such problems is a non-standard task. Employing the
finite difference or finite element methods requires the use of artificial boundary conditions (ABC’s) imposed
on the finite computational domain to simulate the effects of diffusion into an infinite medium. There is an
extensive literature on the issues concerning the treatment of ABC’s and here we only mention the monograph
[4] and the works of Han and Huang [7] and Wu and Sun [13]. It is well known that the adhoc discretization of
the analytic ABC’s induces numerical reflections at the artificial boundary and the stability properties of the
underlying method could also be affected. To avoid such difficulties, the discrete ABC’s are obtained directly
from the fully discretized problem on the unbounded domain by [3] and have been successfully employed in [2]
and several others in a variety of applications.

On the other hand, integral equation methods have also been employed for finding the numerical solution
of these problems, albeit with a high computational cost. Recently Greengard and Lin [5] developed an effi-
cient new algorithm based on the spectral approximation of the free space heat kernel and the non-uniform
fast Fourier transform. For more details on this approach, we refer to [6,10] and the references therein.
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The method proposed in this paper uses wavelets as building blocks to generate certain fundamental solu-
tions, called heatlets, to the heat equation. In spite of the popularity of wavelets and their use in numerical
schemes for finding approximate solutions to problems arising in physical and engineering applications, the
theoretical connections between wavelets and differential operator have not been thoroughly investigated.
Shen and Strang [9] made some pioneering contributions in this direction. More precisely, heatlets are funda-
mental solutions of the problem

Uy = Uy, u(x,0) = f(x), —oo<x<o0,t>0, (L.1)

where the initial function f{x) is either a scaling function or a wavelet. Establishing a theoretical alliance be-
tween wavelets and heat equation, they studied heatlets for their translation and scale invariance properties.
The locality and their vanishing moment properties are studied by Shen [8]. However, to the best of our
knowledge, no numerical study has been done using these heatlets. In this paper, we introduce a forcing term
in (1.1), which may be either a scaling function or a wavelet and obtain the corresponding heatlet solutions.
Further, we propose here a method for finding the numerical solution of the heat conduction problems on
unbounded domains using heatlets. We compare the numerical results with those obtained using finite differ-
ence and finite element methods.

The main advantage of the method proposed here is that once the library of heatlets are built for a heat
equation up to a desired level of accuracy, the computation of solution for any initial function or forcing term,
requires only the knowledge of wavelet coefficients of these functions and the numerical solution of the prob-
lem can be easily obtained.

The organization of the paper is as follows. In Section 2, we provide some mathematical preliminaries on
wavelets. Section 3 deals with the construction of heatlets, their properties and a description of the proposed
numerical approach. In Section 4, we present briefly the problem on the computational domain, along with the
ABC’s. Finally, numerical examples are considered in Section 5 and the results obtained are compared with
those obtained using the finite difference and finite element methods.

2. Preliminaries

A multiresolution analysis (MRA) of L*(R), the real space of all square integrable functions on R, equipped
with the standard innerproduct (-,-), is a chain of closed subspaces indexed by all integers:

VvV clycVyCVsy..., (21)
such that

(i) lim,_ .V, = L*(R),

(ii) lim,_ .V, = {0},

(iii) f{r) € V,, <= A2)) € Vit

(iv) Let ¢ be a scaling function such that {¢(- — k) : k € Z} constitute a complete orthonormal basis of V5.

To obtain a multiresolution analysis, it suffices to construct the scaling function ¢(x). The entire subspace
chain can then be reconstructed from ¢(x) according to (iii) and (iv). Since V, C V; and from (iii) and (iv), it is
easy to see that ¢(-) must be a linear combination of {¢(2- —k) : k € Z}, leading to the two scale relation

¢() =2 (2 —k), (22)

kez

for a suitable set of coefficients (.. .,4_q,hg, hy, .. .). If the scaling function ¢ is compactly supported, as is usu-
ally the case in most numerical evaluations, we have

G() =2 (2 —k),

with hph;, # 0. It is usually assumed in wavelet analysis that [ ¢ = 1. This implies
ho+hi+hy+ -+ by =1 (23)
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