

www.elsevier.com/locate/amc

Approximating fixed points of nonexpansive mappings in a Banach space by metric projections

Shin-ya Matsushita a,*, Wataru Takahashi b

Department of Information Sciences, Matsue National College of Technology, Nishi-ikuma, Matsue, Shimane 690-8518, Japan
 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
 Oh-Okayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract

In this paper, a strong convergence theorem for nonexpansive mappings in a uniformly convex and smooth Banach space is proved by using metric projections. This theorem is different from the recent strong convergence theorem due to Xu [H.K. Xu, Strong convergence of approximating fixed point sequences for nonexpansive mappings, Bull. Aust. Math. Soc. 74 (2006) 143–151] which was established by generalized projections.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Nonexpansive mapping; Metric projection; Uniformly convex Banach space; Approximating fixed point

1. Introduction

Let C be a closed convex subset of a real Banach space E and let $T: C \to C$ be a nonexpansive mapping. Strong convergence theorems for nonexpansive mappings have been investigated with implicit and explicit iterative schemes; see Browder [2], Halpern [5], Reich [9], Takahashi and Ueda [13], Wittmann [14] and Shioji and Takahashi [10] etc. On the other hand, using the metric projection, Nakajo and Takahashi [7] introduced the following iterative algorithm in the framework of Hilbert spaces: $x_0 = x \in C$ and

$$\begin{cases}
y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\
C_n = \{ z \in C : ||z - y_n|| \le ||z - x_n|| \}, \\
Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\
x_{n+1} = P_{C_n \cap Q_n} x, \quad n = 0, 1, 2, \dots,
\end{cases}$$
(1.1)

where $\{\alpha_n\} \subset [0, \alpha], \alpha \in [0, 1)$ and $P_{C_n \cap Q_n}$ is the metric projection from a Hilbert space H onto $C_n \cap Q_n$. They proved that $\{x_n\}$ generated by (1.1) converges strongly to a fixed point of T. The authors [6] extended Nakajo and Takahashi's theorem to Banach spaces by using relatively nonexpansive mappings.

E-mail addresses: matsushita@matsue-ct.ac.jp (S. Matsushita), wataru@is.titech.ac.jp (W. Takahashi).

^{*} Corresponding author.

Xu [15] recently introduced the following iterative algorithm in the framework of Banach spaces: $x_0 = x \in C$ and

$$\begin{cases}
C_{n} = \overline{co} \{ z \in C : ||z - Tz|| \leq t_{n} ||x_{n} - Tx_{n}|| \}, \\
D_{n} = \{ z \in C : \langle x_{n} - z, Jx - Jx_{n} \rangle \geq 0 \}, \\
x_{n+1} = \Pi_{C_{n} \cap D_{n}} x, \quad n = 0, 1, 2, \dots,
\end{cases}$$
(1.2)

where $\overline{co}D$ denotes the convex closure of the set D, $\{t_n\}$ is a sequence in (0,1) with $t_n \to 0$, and $\Pi_{C_n \cap D_n}$ is the generalized projection of E onto $C_n \cap D_n$ (see Alber [1] for generalized projections). Then, he proved that $\{x_n\}$ generated by (1.2) converges strongly to a fixed point of T.

In this paper, motivated by (1.1) and (1.2), we introduce the following iterative algorithm for finding fixed points of nonexpansive mappings in a uniformly convex and smooth Banach space: $x_0 = x \in C$ and

$$\begin{cases}
C_n = \overline{co} \{ z \in C : ||z - Tz|| \le t_n ||x_n - Tx_n|| \}, \\
D_n = \{ z \in C : \langle x_n - z, J(x - x_n) \rangle \ge 0 \}, \\
x_{n+1} = P_{C_n \cap D_n} x, \quad n = 0, 1, 2, \dots,
\end{cases}$$
(1.3)

where $P_{C_n \cap D_n}$ is the metric projection from E onto $C_n \cap D_n$. We first prove that the sequence $\{x_n\}$ generated by (1.3) is well-defined. Then, we prove that $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is the metric projection from E onto the set of all fixed points of T.

2. Preliminaries

Throughout this paper we denote by \mathbb{N} the set of all positive integers. Let E be a real Banach space and let E^* be the dual of E. We denote the value of $x^* \in E^*$ at $x \in E$ by $\langle x, x^* \rangle$. When $\{x_n\}$ is a sequence in E, we denote strong convergence of $\{x_n\}$ to $x \in E$ by $x_n \to x$ and weak convergence by $x_n \to x$. The normalized duality mapping E from E to E^* is defined by

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}$$

for all $x \in E$. Some properties of the duality mapping have been given in [4,11,12].

A Banach space E is said to be *strictly convex* if $\|\frac{x+y}{2}\| < 1$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$. A Banach space E is also said to be *uniformly convex* if $\lim_{n\to\infty} \|x_n - y_n\| = 0$ for any two sequences $\{x_n\}$ and $\{y_n\}$ in E such that $\|x_n\| = \|y_n\| = 1$ and $\lim_{n\to\infty} \|x_n + y_n\| = 2$. We also know that if E is a uniformly convex Banach space, then $x_n \to x$ and $\|x_n\| \to \|x\|$ imply $x_n \to x$. Let $U = \{x \in E : \|x\| = 1\}$ be the unit sphere of E. Then the Banach space E is said to be *smooth* if

$$\lim_{t\to 0}\frac{\|x+ty\|-\|x\|}{t}$$

exists for each $x, y \in U$. Let C be a closed convex subset of a reflexive, strictly convex and smooth Banach space E. Then for any $x \in E$, there exists a unique point $x_0 \in C$ such that

$$||x_0 - x|| = \min_{y \in C} ||y - x||.$$

The mapping $P_C: E \to C$ defined by $P_C x = x_0$ is called the *metric projection* from E onto C. Let $x \in E$ and $u \in C$. Then, it is known that $u = P_C x$ if and only if

$$\langle u - y, J(x - u) \rangle \geqslant 0 \tag{2.1}$$

for all $y \in C$ [1,8,11,12].

Let C be a closed convex subset of a Banach space E. A mapping $T: C \to C$ is said to be *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for each $x, y \in C$. We denote by F(T) the set of fixed point of T. The following proposition was proved by Bruck [3].

Proposition 2.1 (See [3]). Let C be a closed convex subset of a uniformly convex Banach space. Then for each r > 0, there exists a strictly increasing convex continuous function $\gamma : [0, \infty) \to [0, \infty)$ such that $\gamma(0) = 0$ and

Download English Version:

https://daneshyari.com/en/article/4634690

Download Persian Version:

https://daneshyari.com/article/4634690

<u>Daneshyari.com</u>