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Abstract

Several lower bounds have been proposed for the smallest singular value of a square matrix, such as Johnson’s bound,
Brauer-type bound, Li’s bound and Ostrowski-type bound. In this paper, we focus on a bidiagonal matrix and investigate
the equality conditions for these bounds. We show that the former three bounds give strict lower bounds if all the bidiag-
onal elements are non-zero. For the Ostrowski-type bound, we present an easily verifiable necessary and sufficient condi-
tion for the equality to hold.
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1. Introduction

The singular values are fundamental quantities that describe the properties of a given matrix. In particular,
the smallest singular value plays a special role in numerical linear algebra and several lower bounds for esti-
mating it from below have been proposed so far. Examples of lower bounds include Johnson’s bound [1],
Ostrowski-type bound [2], Brauer-type bound [2] and Li’s bound [3].

In a certain situation, we are interested to know whether equality holds in these lower bounds. For example,
lower bounds can be used to determine the shifts in the dqds or related algorithms for singular value compu-
tation [4,5]. In that case, to guarantee global convergence and numerical stability, we must make sure that the
bound is strictly smaller than the smallest singular value [6].

In this paper, we focus on a bidiagonal matrix and study the equality conditions for the four lower bounds
listed above. We show that if all the diagonal and upper subdiagonal elements are non-zero, Johnson’s bound,
Brauer-type bound and Li’s bound all give strict lower bounds. The restriction here is not serious since any
bidiagonal matrix can be transformed easily to satisfy it. For Ostrowski-type bound, we give a necessary
and sufficient condition for equality to hold.
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In Section 2, we review the four lower bounds for the smallest singular value. In Section 3, we give two
theorems concerning the equality conditions for these bounds. Section 4 gives an example of a bidiagonal
matrix for which the Ostrowski-type bound gives the exact smallest singular value.

2. Lower bounds on the smallest singular value

We consider an n by n upper bidiagonal matrix B given by
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and denote its smallest singular value by rn(B). Following [4], we assume that B has Property (A) defined
below:

Definition 2.1. An upper bidiagonal matrix B is said to have Property (A) if all the diagonal elements are
positive and all the upper subdiagonal elements are negative, i.e., bii > 0 (i = 1, . . .,n) and bi,i+1 > 0
(i = 1, . . .,n � 1).

If B has Property (A), the right and left singular vectors corresponding to rn(B) can be chosen positive since
they are the eigenvectors of positive matrices (BTB)�1 and (BBT)�1, respectively, corresponding to the largest
eigenvalue (rn(B))�2.

We can show that our assumption is not restrictive as follows. If one of the subdiagonal elements of B is
zero, B is decomposed into a direct sum of two upper diagonal matrices. So we can compute the lower bounds
for each matrix separately. If a diagonal element of B is zero, by applying one step of the dqds algorithm with
zero shift, we can chase the zero element to the lower-right corner. By deflating the element, we obtain a smal-
ler bidiagonal matrix with non-zero diagonals [4]. Finally, the diagonal elements and upper subdiagonal ele-
ments can be made positive and negative, respectively, by multiplying appropriate diagonal matrices with
diagonal elements ±1 from both sides.

Now we can state the four lower bounds that we will deal with in this paper. In the following, we adopt the
convention that b0,1 = bn,n+1 = 0.

Theorem 2.2 (Johnson bound [1])

rnðBÞP min
16k6n
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Theorem 2.3 (Brauer-type bound [2])
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Theorem 2.4 (Li’s bound [3])
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Theorem 2.5 (Ostrowski-type bound [2])
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