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Abstract

The modified Adomian decomposition method is used to solve the generalized Boussinesq equation. The equation com-
monly describes the propagation of small amplitude long waves in several physical contents. The analytic solution of the
equation is obtained in the form of a convergent series with easily computable components. For comparison purposes, a
numerical algorithm, based on Chebyshev polynomials, is developed and simulated. Numerical results show that the
modified Adomian decomposition method proves to be more accurate and computationally more efficient than the
Galerkin—Chebyshev method.
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1. Introduction

The importance of soliton producing nonlinear wave equations is well understood among theoretical phys-
icists and applied mathematicians. An equation admitting soliton solutions which has received comparatively
little attention in the literature is

Uy = Uy + (uz)xx + Urrrx- (11)

It is referred to as the “bad” Boussinesq equation, or the nonlinear beam equation. It describes the motion of
long waves in shallow water under gravity in a one-dimensional nonlinear lattices. Eq. (1.1) admits the solitary
wave solution

u(x,t) = A sech*(\/4/6(x — ct)), (1.2)

* Corresponding author.
E-mail addresses: mahajji@uaeu.ac.ae (M.A. Hajji), kamelasel@yahoo.com (K. Al-Khaled).

0096-3003/$ - see front matter © 2007 Published by Elsevier Inc.
doi:10.1016/j.amc.2007.02.090


mailto:mahajji@uaeu.ac.ae
mailto:kamelasel@yahoo.com

M. A. Hajji, K. Al-Khaled | Applied Mathematics and Computation 191 (2007) 320-333 321

where 4 and ¢ = +4/1 + 24/3 are the amplitude and the speed of the solitary wave, respectively. These fea-
tures of Eq. (1.1) are quite reminiscent of the properties of the Korteweg-de Vries (KdV) equation

U + utty + thyy = 0 (1.3)

in that they both possess solitary wave solutions, except that the KdV equation allows only one-directional
wave propagation and the Boussinesq equation describes bi-directional wave propagation.

In recent years, a great deal of research has been conducted in the study of Eq. (1.1) from various points of
view (see, for example, [6,8,10,12] and the references therein). For example, in [10] an exact formula is given
for the interaction of solitary waves and in [8], Hirota has deduced conservation laws and has examined N-
soliton interaction. The representation of periodic waves as sums of solitons has been given by Whitham in
[12]. Wazwaz in [11] used a modified algorithm of the Adomian decomposition method (shortly, ADM) to
construct soliton solutions of Eq. (1.1) subject to the initial conditions

u(x,0) = f(x), u(x,0) = glx). (1.4)

El-Sayed and Kaya [6] studied the solitary-wave solutions, using the ADM, of the (2 + 1)-dimensional Bous-
sinesq equation

_ 2
Uy = Uy + Uy + (U7 + U

In this paper, we consider a regularized version of Eq. (1.1) via the singularly perturbed (sixth-order) Bous-
sinesq equation

Uy = Uyy + (p(u))vx + Olrer + Phrecns (1.5)

where « and f are real numbers (f is small). This equation was originally introduced by Daripa and Hua [4].
The sixth order derivative term provides dispersive regularization. The physical relevance of Eq. (1.5) in the
context of water waves was recently addressed by Dash and Daripa [5]. It was shown that Eq. (1.5) actually
describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of
shallow water. So, it is closely related to the singularly perturbed (fifth-order) KdV equation

2
Uy + Ully + Uppy 1 € Unexxx s

which can be derived from Eq. (1.5) by using suitable transformations [5]. The fifth-order KdV equation has
been studied by Kaya [9] where soliton solutions were found using the ADM.

Since Eq. (1.1) has solitary wave solutions, the natural question arises whether Eq. (1.5) also admits solitary
wave solutions for small values of . As Eq. (1.5) can serve as a better model than the classical fourth-order
Boussinesq equation (1.1)to describe bi-directional wave propagation on the surface of shallow water, in this
paper we consider the generalized Boussinesq equation

Uy = ZO: biu(2i+2)x + [Q(u)]x)ﬂ (1'6)

where Q(u) = u + bou',r and b; (i = 1,2,...,m) are all real constants and u»;), denotes the (2i + 2)nd deriv-
ative of u with respect to x. The modified ADM will be applied to seek soliton solutions of (1.6). Note that the
choices m = 1,by = 1,b; = 1 and r =2 yield Eq. (1.1) and for the choices m =2,by = 1,by = o, by = f,m =2,
and p(u) = ", Eq. (1.6) becomes the singularly perturbed sixth-order Boussinesq Eq. (1.5).

The motivation of this paper is to approach the singularly perturbed Boussinesq equation (1.5) by using the
modified ADM [11], the solutions will be calculated in the form of a convergent infinite series with easily com-
putable components. Numerical results will illustrate the rapid convergence of the infinite series.

In order to compare the modified ADM with other existing methods, a Galerkin method based on Cheby-
shev polynomials is proposed to numerically solve (1.6). The proposed Chebyshev—Galerkin method expresses
the solution as a linear combination of Chebyshev polynomials with time dependent coefficients. Using the
orthogonality of the Chebyshev polynomials, the partial differential equation is reduced to a coupled system
of nonlinear second order ordinary differential equations for the time-dependent expansion coefficients. The
second order system of ODE:s is further written as a larger system of first-order ODEs which is solved numer-
ically using Range—Kutta method of order 4.
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