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Abstract

Differential Riccati equations play a fundamental role in control theory, for example, optimal control, filtering and esti-
mation, decoupling and order reduction, etc. The most popular codes to solve stiff differential Riccati equations use back-
ward differentiation formula (BDF) methods. In this paper, a new approach to solve differential Riccati equations by
means of a BDF method is described. In each step of these methods an algebraic Riccati equation is obtained, which is
solved by means of Newton’s method. In the standard approach, this system is transformed into a Sylvester equation,
which could be solved by means of the well-known Bartels–Stewart method. In our code, we obtain a system of linear
equations, defined from a Kronecker product of matrices related to coefficient matrices of the differential Riccati equation,
that is solved by means of the iterative generalized minimum residual (GMRES) method. We have also implemented an
efficient matrix–vector product in order to reduce the computational and storage cost of the GMRES method. The above
approach has been applied in the development of an algorithm to solve differential Riccati equations. The accuracy and
efficiency of this algorithm has been compared with the BDF algorithm that uses the Bartels–Stewart method. Experimen-
tal results show the advantages of the new algorithm.
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1. Introduction

Consider the differential Riccati equation (DRE)

_X ðtÞ ¼ A21ðtÞ þ A22ðtÞX ðtÞ � X ðtÞA11ðtÞ � X ðtÞA12ðtÞX ðtÞ;
X ðt0Þ ¼ X 0; t0 6 t 6 tf ;

ð1Þ

where A11(t) 2 Rn·n, A22(t) 2 Rm·m, A12(t) 2 Rn·m, A21(t) 2 Rm·n and X(t) 2 Rm·n.
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Available online at www.sciencedirect.com

Applied Mathematics and Computation 196 (2008) 613–626

www.elsevier.com/locate/amc

mailto:vhernand@dsic.upv.es
mailto:jjibanez@dsic.upv.es
mailto:jpeinado@dsic.upv.es


The DRE arises in several applications, in particular in control theory, for example the time-invariant linear
quadratic optimal control problem. In this case, the DRE has the following expression:

_X ðtÞ ¼ Qþ ATX þ XA� XBR�1BTX ; ð2Þ

where A 2 Rn·n, B 2 Rn·m, Q = QT 2 Rn·n is positive semidefinite, and R = RT 2 Rm·m is positive definite, rep-
resenting, respectively, the state matrix, the input matrix, the state weight matrix and the input weight matrix.
Another application of the DRE (1) consists of solving a two point boundary problem, by decoupling this
problem in two initial value problems [1].

This work is concerned with the study and implementation of a method for solving the DRE (1) by numer-
ical integration, using the BDF method. The result is an implicit scheme which solves the discrete version of
the DRE [1] according to the property that the discretization of a polynomial differential equation reduces it to
a polynomial algebraic equation of the same degree.

An example of this methodology appeared in [1], known as DRESOL. This package is based on LSODE
software, developed by Hindsmarsh [2]. Several methods have been implemented for solving the algebraic
Riccati equation (ARE); however, in the context of stiff DREs, one of the better choices for solving the asso-
ciated ARE is to apply implicit schemes based on Newton’s or quasi-Newton’s methods. In both cases, at each
iteration step a Sylvester equation has to be solved

G11Y � YG22 ¼ H ; ð3Þ

where G11 2 Rn·n, G22 2 Rm·m and H 2 Rn·m change at each iteration if Newton’s method is used.
A standard method for solving Eq. (3) is Bartels–Stewart algorithm [3]. By using this approach, matrices

G11 and G22 are both reduced via orthogonal matrices U and V to real Schur form, obtaining the equivalent
equation

ðU TG11UÞðUTYV Þ � ðU TYV ÞðV TG22V Þ ¼ UTHV : ð4Þ

Once the quasi-triangular problem (4) is solved for UTYV, then Y is easily recovered.
This paper is organized as follows. First, Section 2 describes the numerical integration method using BDF

and a methodology as explained in [1] as a starting point. Section 3 presents our approach for solving DRE
applying BDF and GMRES methods. A theoretical study in terms of memory storage and flops requirements
is included. A sequential implementation of the method has been carried out using standard linear algebra
libraries such as basic linear algebra subroutines (BLAS) [4] and linear algebra package (LAPACK) [5]. Sec-
tion 4 presents the test battery and the experimental results. Finally, the conclusions and future work are out-
lined in Section 5.

2. Numerical integration using BDF

The DRE occurs in several applications in different fields of science and engineering. It did not however
receive enough attention in the numerical literature until the mid seventies. Since then many different methods
have been proposed [6,7]. These methods can be grouped into several classes: Vectorized approach, lineariza-
tion approach [8–10], Chandrasekhar approach [11], superposition methods [12,13], BDF methods
[14,15,1,16], and Hamiltonian approach [17,18].

Let the Riccati equation

_X ðtÞ ¼ F ðt;X Þ; X ðt0Þ ¼ X 0; t 2 ½t0; tf �; ð5Þ

where

F ðt;X Þ ¼ A21ðtÞ þ A22ðtÞX ðtÞ � X ðtÞA11ðtÞ � X ðtÞA12ðtÞX ðtÞ;

with A11(t) 2 Rn·n, A12(t) 2 Rn·m, A21(t) 2 Rm·n, A22(t) 2 Rm·m and X(t) 2 Rm·n.
In the literature it is possible to find several methods for solving this equation. One of these methods is

the well-known backward differentiation formula (BDF) [19]. With a BDF scheme, the integration
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