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Abstract

In our recent paper with Srivastava [D. Cvijović, H.M. Srivastava, Summation of a family of finite secant sums, Appl.
Math. Comput. 190 (2007) 590–598] a remarkably general family of the finite secant sums was summed in closed form by
choosing a particularly convenient integration contour and making use of the calculus of residues. In this sequel, we show
that this procedure can be extended and we find the summation formulae in terms of the higher order Bernoulli polyno-
mials and the ordinary Bernoulli and Euler polynomials for two general families of the finite tangent sums.
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1. Introduction

Recently, in order to generalize the finite summation problem considered by Chu [1], we have applied the
calculus of the residues and summed in closed form a remarkably general family of the finite secant sums [2].
In this sequel, we show that the following two finite tangent sums
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can be considered in the same way and we find their summation formulae in terms of the higher order Ber-
noulli polynomials and the ordinary Bernoulli and Euler polynomials.

2. Preliminaries and statement of the results

In what follows, we denote by BðmÞn ðxÞ and EðmÞn ðxÞ, respectively, the Bernoulli polynomial of order m and
degree n and the Euler polynomial of order m and degree n, defined by means of the following generating func-
tions (see, for details, [4, p. 53 et seq.] and [5, Section 1.6])
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Note that by

BðmÞn :¼ BðmÞn ð0Þ ðm; n 2 N0Þ; ð2:3Þ
is defined the nth Bernoulli number of the order m. For m = 1 we have
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where Bn(x) and En(x) are, respectively, the relatively more familiar (ordinary) Bernoulli and Euler polynomi-
als (see, for instance, [4]). The (ordinary) Bernoulli numbers Bn and Euler numbers En are given by
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We use the floor function bxc, also called the greatest integer function or integer value, which gives the larg-
est integer less than or equal to x.

Our results are as follows.

Theorem 1. Let BðmÞn ðxÞ be the Bernoulli polynomial of order m and degree n defined by (2.1) and let Bn(x) and

En(x) be the (ordinary) Bernoulli and the (ordinary) Euler polynomial defined as in (2.4). Then, the sums C2n (q,r)

in (1.1) are given by:
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Theorem 2. Let BðmÞn ðxÞ be the Bernoulli polynomial of order m and degree n defined by (2.1) and let Bn(x) and

En(x) be the (ordinary) Bernoulli and the (ordinary) Euler polynomial defined as in (2.4). Then, the sums
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