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Abstract

Random impulsive differential equations (RIDEs) are a kind of mathematical models with extensive applications. In
this paper, the Euler scheme for RIDEs is first brought forward, one of whose important applications is to generate
the whole approximate trajectories of RIDEs. Thus the proposed Euler scheme allows us to approximate moments, func-
tionals and the distribution for the underlying process and perform Monte-Carlo type analysis. The obtained results show
that the Euler scheme is at least 1-order of step h when the right terms of equation satisfy Lipschitz conditions and the
waiting times of random impulses follow the mutually independent exponential distribution with the same parameter k.
Thus it is an efficient method for numerical simulation.
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1. Introduction

Impulsive differential equations are adequate mathematical models for numerous processes and phenomena
studied in population dynamics [2], physics and chemistry [3], and engineering [4], etc. Significant progress has
been made in the theory of impulsive differential equations in recent years. In effect, the theory of impulsive
differential equations is considerably richer than the theory of ordinary differential equations, see [8] and ref-
erences therein.

Up to now, most known literatures investigate impulsive differential equations with two kinds of impulse
times: fixed impulse times and varying impulse times, where so-called varying impulse time means that the time
that impulse happens is some functions of ‘‘state x’’, see [1,6,9,10,13]. The two kinds of impulse times are
deterministic. However, actual impulse does not always happen at deterministic time but usually at random
time, that is, impulse time tk is a random variable, k ¼ 1; 2; . . . For example, consider an interest rate model.
The time when interest rate is adjusted is a random variable. However, interest rate is a constant during two

0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2007.02.073

q This work is supported by the National Natural Science Foundation of China (10371074) and ShuGuang Plan of Shanghai City
(04SG27).

E-mail address: sj_wu@163.com

Applied Mathematics and Computation 191 (2007) 164–175

www.elsevier.com/locate/amc

mailto:sj_wu@163.com


neighboring adjusted times. Thus, the interest rate r(t) can be modeled by random impulsive differential
equation

drðtÞ
dt ¼ 0; t 6¼ tk;

rðtkÞ ¼ Ikðrðt�k ÞÞ; k ¼ 1; 2; . . . ;

(

where {tk} denote the times that the interest rate is adjusted, which are a series of random variables. Ik is some
pending function of r(tk). Thus, random impulsive differential equations have their value of applications. In
fact, Iwankievicz and Nielsen [5] investigated dynamic response of non-linear systems to Poisson distributed
random impulses. Tatsuyuki et al. [14] presented a random impulse model to depict drift motion of granules in
chara cells due to myosin–actin interaction, which is a descriptive model but a mathematical model. Sanz-Ser-
na and Stuart [12] first brought forward dissipative differential equations with random impulses and used Mar-
kov chains to simulate such systems. Wu and Meng [16] first gave general random impulsive differential

equations (RIDEs)

x0ðtÞ ¼ f ðt; xðtÞÞ a:e:; t 6¼ sk;

Dxðsþk Þ ¼ Ikðsk; xðskÞÞ a:e:; k ¼ 1; 2; . . . ;

�
where sk is the kth impulse moment, which is a random variable, k ¼ 1; 2; . . . From then on, several important
properties of RIDEs have been investigated. Wu and Meng [16] discussed p-moment boundedness of the
above equation by the second Liapunov method. Wu and Duan [17] discussed oscillation, stability, and
boundedness in mean square of second-order linear RIDEs using comparing them with those of the corre-
sponding differential equation without impulsive effect. Wu and Han [18] investigated p-moment exponential
stability of RIDEs by the second Liapunov’s method. Wu et al. [19] studied the existence and uniqueness of
solutions to RIDEs.

RIDEs have no simple explicit solutions or known distributions. In practice, some functionals that is the
mathematical expectations of functions of solutions of RIDEs, have to be computed. It is well-known that
Monte-Carlo simulation methods and Markov chain methods have been developed as a powerful methodol-
ogy to overcome the evaluation problem for stochastic differential equations, see [7,11,12,15] and their refer-
ences. The efficiency of Monte-Carlo methods strongly depends on the use of appropriate discrete time
approximations. In this paper, we first bring forward the Euler scheme for RIDEs, one of whose important
applications is to generate the whole approximate trajectories of RIDEs. Thus the proposed Euler scheme
allows us to approximate moments, functionals and the distribution for the underlying process and perform
Monte-Carlo type analysis.

The structure of this paper follows as: The Euler scheme will be presented in Section 2. Section 3 completes
algorithmic analysis. An example and conclusions are given in Sections 4 and 5, respectively.

2. The Euler scheme

In this section, we will bring forward the Euler scheme for random impulsive differential equations. For the
sake of simplicity, we first denote

R ¼ ð�1;þ1Þ; Rþ ¼ ½0;þ1Þ; Rs ¼ ½s;þ1Þ;
where s 2 R is a constant. Let wk be a random variable defined in Dk � ð0; dkÞ, where dk 2 ð0;þ1�,
k ¼ 1; 2; . . . Furthermore, we assume that wi and wj are mutually independent as i 6¼ j for all i; j ¼ 1; 2; . . .

Consider random impulsive differential equations

x0ðtÞ ¼ f ðt; xðtÞÞ a:e:; t > t0; t 6¼ sk;

xðskÞ ¼ Ikðs�k ; xðs�k ÞÞ a:e:; k ¼ 1; 2; . . . ;

�
ð1Þ

where f : Rs � Rn ! Rn. s1 ¼ t0 þ w1 and sk ¼ sk�1 þ wk as k ¼ 2; 3; . . ., herein t0 2 Rs and wk denotes the
waiting time that the solution to system (1) jumps after the ðk � 1Þth jump. xðs�k Þ � limt!sk�0xðtÞ.
Ik : Rs � Rn ! Rn. ‘‘a.e.’’ is the abbreviation of ‘‘almost everywhere’’.
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