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Abstract

The characterizations of the solution set in extremal problem under inclusion constrains:

min f ðxÞ
s:t: x 2 C; 0 2 F ðxÞ

ðPÞ

is considered in this paper. When f is continuously convex and F is a set-valued map with convex graph, the Lagrange
function of (P) is proved to be a constant on the solution set, and this property is then used to derive various simple
Lagrange mulitiplier-based characterizations of the solution set of (P).
� 2007 Elsevier Inc. All rights reserved.

Keywords: Inclusion constrains; Support function; Subgradient; Solution set

1. Introduction

The characterization of optimal solution of a mathematical programming is an important study in optimi-
zation problems, and it is fundamental for the development of solution methods. It can be widely used in
applied mathematics fields [1,2].

Jeyakumar [3] presented characterization of the solution sets of the following cone-constrained convex
programming

min f ðxÞ
s:t: x 2 C; �gðxÞ 2 K;

ðP0Þ

where X and Y are Bnanach Spaces, C is a closed convex subset of X, K is a closed convex cone in Y, f : X! R

is a continuous convex function, and g : X! Y is a continuous K mapping. The Lagrange multiplier, which is
key to identifying optimal solution for constrained optimization, is used to characterize the solution set of (P 0).
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First, the author established that the Lagrange function of (P 0) is constant on the solution set of (P 0). Then, he
used this elementary property to present various simple Lagrange multiplier-based characterizations of the
solutions set of (P 0).

In this paper, we consider the programming problem under inclusion constrains:

min f ðxÞ
s:t: x 2 C; 0 2 F ðxÞ:

ðPÞ

Suppose that C is a closed convex subset of X, f is a continuous convex function and g is a set-valued mapping
with convex graph. Obviously, the constrain �g(x) 2 K can be written 0 2 g(x) + K. It is also easy to derive
that g(x) + K is a map with convex graph on C, that is to say, the problem (P 0) is a special case of problem (P)
where F(x) = g(x) + K (Remark 2.1). We prove that the Lagrange function of problem (P) is constant on is
solution set (Theorem 3.2). And we derive various characterizations of the solution set using the Lagrange
multiplier (Theorem 3.3, Propositions 3.1, 3.2 and 3.3).

2. Preliminaries

Let X and Y to be Banach Spaces, and X* and Y* are their dual spaces. Let C to be a nonempty closed
subset of X. Suppose that f : X! R is a real-valued function and that g : X! Y is a set-valued mapping.

Definition 2.1. A function f is said to be satisfy a Lipschitz condition of rank K on a given set C provided that F

is finite on C and satisfies

jf ðxÞ � f ðyÞj 6 Lkx� yk; 8x; y 2 C:

A function f is said to be Lipschitz near x if it satisfis the Lipschitz condition on a neighborhood of x. A func-
tion f is said to be Locally Lipschitz on C if f is Lipschitz near x for every x 2 C.

Definition 2.2. Let f be Lipschitz of rank K near a given point x 2 X. The generalized directional derivative of f

at x in the direction v, denoted f�(x;v), is defined as follows:

f �ðx; vÞ ¼ lim sup
y!x;t#0

f ðy þ tvÞ � f ðyÞ
t

;

where of course y is a vector in X and t is a positive scalar.

Definition 2.3. The generalized gradient of f at x, denoted of(x), is defined to be the subset of X*

of ðxÞ ¼ fx� 2 X � : f �ðx; vÞP hx�; vi; 8v 2 Xg:

Proposition 2.1. Let f be convex on C and Lipschitz near x 2 C. Then the directional derivatives f 0(x; v) exist,

and we have f 0(x;v) = f�(x;v). A vector x* 2 of(x) iff

f ðyÞ � f ðxÞP hx�; y � xi; 8y 2 C:

Definition 2.4. The tangent cone to C at x, denoted TC(x), is the set of all those v 2 X satisfying

d�Cðx; vÞ ¼ 0;

where d�Cðx; vÞ is the distant function of C, given by

dCðxÞ ¼ inffkx� ck : c 2 Cg:

Definition 2.5. The normal cone to C at x, denoted NC(x), is defined the polarity of its tangent cone

NCðxÞ ¼ ðT CðxÞÞ� ¼ fx� 2 X � : hx�; vi 6 0; 8v 2 T CðxÞg:
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