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Departamento de Matemática Aplicada, IMECC – UNICAMP, Cidade Universitária Zeferino Vaz,
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Abstract

We present a numerical scheme, based on Godunov’s method (REA algorithm), for the variance of the solution of the
1D random linear transport equation, with homogeneous random velocity and stochastic initial condition. We obtain the
stability conditions of the method and we also show its consistency with a deterministic nonhomogeneous advective–dif-
fusive equation, which means convergency. Numerical results are considered to validate our scheme.
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1. Introduction

In this work we are concerned about the variance of the solution of the random transport equation,

Qtðx; tÞ þ AQxðx; tÞ ¼ 0; t > 0; x 2 R;

Qðx; 0Þ ¼ Q0ðxÞ;

�
ð1Þ

with a homogeneous random transport velocity, A, and stochastic initial condition, Q0(x). The solution,
Q(x, t), is a random function. For the particular case, Riemann problem (1) with

Qðx; 0Þ ¼
Q�0 if x < 0;

Qþ0 if x > 0;

�
ð2Þ

where Q�0 and Qþ0 are random variables, we presented in [1] the expression for the solution:

QRðx; tÞ ¼ Q�0 þ X Qþ0 � Q�0
� �

; ð3Þ

where X is a Bernoulli random variable with P ðX ¼ 0Þ ¼ 1� F A
x
t

� �
and P ðX ¼ 1Þ ¼ F A

x
t

� �
; here FA(x) is the

cumulative probability function of the random variable A.

0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2007.01.038

* Corresponding author.
E-mail addresses: cunha@ime.unicamp.br (M.C.C. Cunha), fabio.dorini@gmail.com (F.A. Dorini).

Applied Mathematics and Computation 190 (2007) 362–369

www.elsevier.com/locate/amc

mailto:cunha@ime.unicamp.br
mailto:fabio.dorini@gmail.com


Also, according to [1], considering the independence between A and both Q�0 , Qþ0 , the statistical mean and
variance are given by

hQRðx; tÞi ¼ hQ�0 i þ F A
x
t

� �
hQþ0 i � hQ�0 i
� �

ð4Þ

and

Var½QRðx; tÞ� ¼ Var½Q�0 � þ F A
x
t

� �
½Var½Qþ0 � � Var½Q�0 �� þ F A

x
t

� �
1� F A

x
t

� �h i
hQþ0 i � hQ�0 i
� �2

: ð5Þ

In our point of view, the special attraction of (3)–(5) is their utilization in discretizations of stochastic equa-
tions, like (1). In [2] we present an explicit method to calculate the first statistical moment of Q(x, t), the solu-
tion of (1) with Qðx; 0Þ ¼ Q0ðxÞ a random function. In that report we show that the Godunov method provides
a numerical scheme for the statistical mean which is, under certain assumptions on the discretization, stable
and consistent with a diffusive equation. Therefore, besides the scheme itself, the numerical approach also
gives an effective equation compatible with one published in the literature.

The aim of this paper is to improve the knowledge of the random solution of (1) with the random function
Qðx; 0Þ ¼ Q0ðxÞ. We present a numerical method to calculate the variance of Q(x, t), which is the quantity most
commonly used to specify the dispersion of the distribution around its mean.

In Section 2 we deduce the explicit numerical scheme using the Godunov’s ideas. Consistency, stability and
convergency are analyzed in Section 3. Finally, in Section 4, we present some numerical examples.

2. The numerical scheme

In this section we present the numerical scheme for the variance of the solution of (1). We denote the spatial
and the time grid points by xj ¼ jDx and tn ¼ nDt, respectively, and the jth grid cell is Cj ¼ ðxj�1=2; xjþ1=2Þ,
xj�1=2 ¼ xj � Dx

2
. Let Qn

j be an approximation of the cell average of Qðx; tnÞ:

Qn
j ’

1

Dx

Z
Cj

Qðx; tnÞdx ¼ 1

Dx

Z xjþ1=2

xj�1=2

Qðx; tnÞdx: ð6Þ

Assuming that the cell averages at time tn, Qn
j , are known, we summarize the REA, for Reconstruct-Evolve-

Average, algorithm [3,4] in three steps:

[Step 1.] Reconstruct a piecewise polynomial function, eQðx; tnÞ, from the cell averages Qn
j . In our case we use

the piecewise constant function with Qn
j in the jth cell, i.e., eQðx; tnÞ ¼ Qn

j for all x 2 Cj.
[Step 2.] Evolve the equation exactly, or approximately, with this initial data to obtain eQðx; tnþ1Þ a time Dt

later.
[Step 3.] Average eQðx; tnþ1Þ over each grid cell to obtain the new cell averages, i.e.,

Qnþ1
j ¼ 1

Dx

Z
Cj

eQðx; tnþ1Þdx:

At a time tn, the piecewise constant function, step 1, defines a set of Riemann problems in each x ¼ xj�1=2:
the differential equation (1) with the initial condition

Qðx; tnÞ ¼
Qn

j�1 if x < xj�1=2;

Qn
j if x > xj�1=2:

(
ð7Þ

We may use (3) to find a local solution to each Riemann problem at a time Dt
2

later:

Qðx; tnþ1=2Þ ¼ Qn
j�1 þ X

x� xj�1=2

Dt=2

	 

Qn

j � Qn
j�1

h i
; ð8Þ

where, for a x sufficiently close to xj�1=2, X ðxÞ is the Bernoulli random variable:

X ðxÞ ¼
1; PðX ðxÞ ¼ 1Þ ¼ F AðxÞ;
0; PðX ðxÞ ¼ 0Þ ¼ 1� F AðxÞ:

�
ð9Þ
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