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Abstract

In this letter, a predator-prey system of two-prey one-predator discrete model is investigated. It is proved that the sys-
tem is permanence under some appropriate conditions. By Jacobian matrix method, a sufficient and necessary condition is
derived for the local asymptotic stability of a equilibrium of the system. Meanwhile, we give a suitable example for sup-
porting our theoretical result.
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1. Introduction

In recent years the dynamic relationship between predators and their prey has long been and will continue
to be one of the dominant themes in both ecology and mathematical ecology. In the theoretical ecology, per-
manence and stability of equilibrium of the predator-prey model are very important. There are extensive lit-
erature related to these topics for differential equation models (see [1,2,5–9] and the references cited therein).
Most recently, Sikder [1] considered uniform persistence of the following two prey-one predator continuous
time model
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where N1, N2 and N3 are the dnsities of prey species 1, prey species 2 and predator, respectively. For prey
species i, ri is the maximum per capita growth rate, ki is the carrying capacity, ai is the effective search rate
per unit time, ei is its net energy content, hi is the handling time. The parameter b denotes the probability that
a predator attacks the prey type 2. The parameter c is a proportionality constant converting energy intake per
predator to per capita reproduction of predators and d is the predator mortality rate.

Naturally, the discrete time models are more appropriate than the continuous ones when the size of the
population is rarely small or the population has non-overlapping generations. Recently, there has been a ten-
dency for some researchers in the field of difference equations to develop some new methods which are ana-
logous to those used in the study of differential equations (see, e.g., [3,4,10–20] and the references therein).

The main purpose of this paper is to study the following general discrete analogue of continuous time
model (1.1)

N 1ðnþ 1Þ ¼ N 1ðnÞ exp r1ðnÞ � r1ðnÞN1ðnÞ
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For simplitity, we nondimensionalize the system (1.2) with the following scaling:

x1 !
N 1

k1

; x2 !
N 2

k2

; y ! N 3;

and then obtain the form

x1ðnþ 1Þ ¼ x1ðnÞ exp r1ðnÞ � r1ðnÞx1ðnÞ � a1ðnÞyðnÞ
1þAðnÞx1ðnÞþBðnÞx2ðnÞ
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x2ðnþ 1Þ ¼ x2ðnÞ exp r2ðnÞ � r2ðnÞx2ðnÞ � ba2ðnÞyðnÞ
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yðnþ 1Þ ¼ yðnÞ exp �dðnÞ þ CðnÞx1ðnÞþDðnÞx2ðnÞ
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where

AðnÞ ¼ a1ðnÞh1ðnÞk1ðnÞ; BðnÞ ¼ ba2ðnÞh2ðnÞk2ðnÞ;
CðnÞ ¼ ca1ðnÞe1ðnÞk1ðnÞ; DðnÞ ¼ cba2ðnÞe2ðnÞk2ðnÞ:

Throughout this paper, we will assume that r1(n), r2(n), a1(n), a2(n), A(n), B(n), C(n), D(n) and d(n) are
bounded nonnegative sequences, and use the following notations for any bounded sequence u(n):

�u ¼ sup
n2N

uðnÞ; u ¼ inf
n2N

uðnÞ;

where N is the set of nonnegative integer numbers. By the biological meaning, we will focus our discussion on
the positive solutions of (1.3). Thus, we require that xi(0) > 0 (i = 1,2), y(0) > 0.

In this letter, we will study the permanence and the local stability of equilibrium for this discrete model.
Finally, a suitable example is given to illustrate the feasibility of the conditions of our theorem.

2. Permanence

In this section, we will establish a permanence result for system (1.3). Firstly, we introduce a definition and
state some lemmas which will be useful to establish our main results.

Definition 2.1. System (1.3) is said to be permanence if there exist two positive vectors m and M such that

m 6 lim inf
n!1

ðx1ðnÞ; x2ðnÞ; yðnÞÞ 6 lim sup
n!1

ðx1ðnÞ; x2ðnÞ; yðnÞÞ 6 M ;

for any solution x(n) = (x1(n),x2(n), y(n)) of (1.3).
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