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Abstract

The purpose of this paper is to convey the readers several useful remarks for understanding, simulating and verifying
the Kalman filter (KF) computer codes. A tutorial, example-based approach is employed to present several KF issues of
considerable importance in engineering practice, and to suggest some check points on Kalman filtering verification process.
Some illustrative examples are accompanied where necessary to the readers for better understanding the fundamental basis
and for enhancing the reliability (correctness) of the self-developed computer codes before larger, complicated KF designs
are performed. Notes on two forms of discrete-time Kalman filter loop are pointed out. Methods for determining the pro-
cess noise covariance matrix are provided. Simulation of the dynamic process is discussed. Guidelines for verification of
filtering solutions are provided, which cover (1) the consistency check between the discrete-time to the continuous-time
covariance and gain matrices; (2) evaluation of estimator optimality with sensitivity analysis and consistency check
between theoretical and simulation results.
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1. Introduction

The Kalman filter [1-6] (KF) or its nonlinear version, extended Kalman filter (EKF), has been the most well
known sequential data assimilation scheme for solving the Wiener problem in a generally easier way. It has
been applied in the areas as diverse as acrospace, marine navigation, radar target tracking, control systems,
manufacturing, and many others. For the aerospace navigation applications, it has been very popular in
GPS/INS and GPS stand-alone navigation designs and is recognised as the navigation’s integration work-
horse. A navigation filter is commonly designed by use of a Kalman filter to estimate the vehicle state variables
and suppress the navigation measurement noise. The Kalman filter not only works well in practice, but also it
is theoretically attractive because it has been shown that it is the filter that minimizes the variance of the esti-
mation mean square error.

Studying the operation of the Kalman filter leads to an appreciation of the inter-disciplinary nature of sys-
tem engineering. However, implementation of the Kalman filter is a challenge to some system designers. A
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deeper understanding of the theory and awareness of practical implementation can only be experienced by
employing the filter in practical situation. It may not be such a difficult task to develop a KF computer code.
However, it is a challenge to assure its reliability. Even after constructing the program code, some designers
may not be able to ensure the correctness of the computer code developed by them. Based on the consider-
ation, several practical remarks are pointed out in this article for clarifying some fundamental concept and
conveying some important phenomena. For better illustration, numerical examples are provided where neces-
sary to the readers for better understanding the fundamental basis. The remarks presented in this paper are
beneficial to the KF designers, which can be employed as guidelines for developing reliable Kalman filter com-
puter codes.

This paper is organized as follows. In Section 2, additional notes on discrete-time Kalman filter (DTKF)
loop are pointed out. In Section 3, determination of the process noise covariance matrix is presented. Simu-
lation of the dynamic process is discussed in Section 4. In Section 5, relation of the DTKF to the continuous
Kalman filter (CKF) is shown. The evaluation of estimator optimality for verification of minimum variance
optimality with sensitivity analysis and consistency check is provided in Section 6. The conclusion is given in
Section 7.

2. Additional notes on discrete-time Kalman filter loop
Consider a dynamical system whose state is described by a linear, vector differential equation. The process

model and measurement model are represented as

Process model : x = Fx + Gu, (1)
Measurement model : z = Hx + v, (2)

where the vectors u(¢) and v(7) are both white noise sequences with zero means and mutually independent:

Elu(u’ (7)] = Qd(t — 1), (3a)
E[G(u(1)(G(Hu(x))"] = GQGTé(r — 1), (3b)
E[v(t)¥!(x)] = Ro (t - 1), (4)

Elu()v'(1)] = (5)

where (¢ — 7) is the Dirac delta function, E[-] represents expectation, and superscript “T”’ denotes matrix
transpose.

2.1. The continuous Kalman filter

The state estimate equation of the continuous Kalman filter equations is represented as

X = Fx + K(z — Hx). (6)
The propagation of the error for a continuous Kalman filter can be described by the Riccati equation,

P = FP + PF" — PH'R 'HP + GQG" (7)
and the continuous filter gain is obtained through the calculation

K=PH'R . (8)
The discrete filter gain and continuous filter gain are related by

K
K=2, ©)

where At = 1,4, — t; represents the sampling period. When the system reaches steady-state, P = 0, Eq. (7)
becomes an Algebraic Riccati Equation (ARE), which can be solved for the steady-state minimum covariance
matrix.
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