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Abstract

Biharmonic equation has significant applications in physics and engineering, but is difficult to solve due to the existing
fourth order derivatives. One of the domain-type mashless methods is obtained by simply applying the radial basis func-
tions (RBFs) as a direct collocation, which has shown to be effective in solving complicated physical problems with irreg-
ular domains. In this paper, we utilize overlapping domain decomposition and multilevel RBF methods for solving
biharmonic equation. Numerical results indicate that these two methods circumvent the ill-conditioning problem resulted
from using the radial basis function as a global interpolant.
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Keywords: Radial basis functions; Meshless method; Multilevel RBF; Overlapping domain decomposition; Biharmonic equation

1. Introduction

Consider the two-dimensional biharmonic equation

r4uðx; yÞ ¼ o
4u

ox4
þ o

4u
oy4
þ 2

o
4u

ox2oy2
¼ f ðx; yÞ; ðx; yÞ 2 X ð1:1Þ

and Dirichlet boundary conditions

u ¼ f1ðx; yÞ;
ou
on
¼ f2ðx; yÞ; ðx; yÞ 2 oX:

Here X is a two-dimensional simply-connected domain with a piecewise smooth boundary oX, and un ¼ ou
on is

the outward normal derivative of u on oX.
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Various approaches for the numerical solution of the biharmonic equation have been considered in the lit-
erature. For example, numerical solutions of this equation is usually obtained through the use of the finite
difference method (FDM) because of the ease of grid generation and the dissipative characteristics of the
method, which results in a more stable solution. However, the FDM usually involves a rectangular grid sys-
tem, which makes it very difficult to model the detailed topographic features of an irregular domain. Although
the finite element method (FEM) can accommodate a more flexible gridwork and has been used as an alter-
native solution scheme for this equation, the finite element solution is not as stable as the finite difference solu-
tion and usually requires the use of nonphysical dissipation. Furthermore, the generation of a finite element
grid with several thousand nodes and with elements of various sizes, shapes and orientations is not a trivial
task.

In the last decade, the development in applying the radial basis functions (RBFs) as a truly meshless
method for approximating the solutions of PDEs has drawn the attention of many researchers in science
and engineering [9,10]. Table 1 lists some of the globally supported RBFs. As usual, we use r = k Æk (the
Euclidean norm), and c is a parameter to be set by the user. In 1971, the multiquadric (MQ) was first devel-
oped by Hardy [13] as a multidimensional scattered interpolation method in modeling the earth’s gravitational
field. It was not recognized by most of the academic researchers until Franke [8] published a review paper in
the evaluation of 29 2D interpolation methods whereas MQ was ranked the best based on its accuracy, visual
aspect, sensitivity to parameters, execution time, storage requirements, and ease of implementation. One of the
domain-type meshless methods, the so-called Kansa’s method developed by Kansa in 1990 [15], is obtained by
directly collocating the RBFs, particularly the multiquadric (MQ), for the numerical approximation of the
solution. Kansa’s method was recently extended to solve various ordinary and partial differential equations
including nonlinear Burgers’ equation with shock wave, shallow water equations for tide and current simula-
tion, heat transfer problems, and free boundary problems. Fasshauer [3] later modified Kansa’s method to a
Hermite-type collocation method for the solvability of the resultant collocation matrix.

In this paper, we solve the biharmonic equation by collocation with radial basis functions. The paper is
organized as follows. In Sections 2 and 3, a brief introduction to both Kansa’s and Hermite approaches is
given. In Sections 4–6 we outline the overlapping domain decomposition and multilevel radial basis functions
methods. Numerical results are given in Section 7.

2. Kansa’s approach

In this context we are given data (xj, fj), j = 1, . . . ,N, xj 2 Rd , where we can think of the values fj being sam-
pled from a function f : Rd ! R. The goal is to find an interpolant of the form

sðxÞ ¼
XN

k¼1

ckuðkx� xkkÞ; x 2 Rd ð2:1Þ

such that

sðxjÞ ¼ fj; j ¼ 1; . . . ;N :

The solution of this problem leads to a linear system Ac = f with the entries of A given by

Aj;k ¼ uðkxj � xkkÞ; j; k ¼ 1; . . . ;N : ð2:2Þ
Clearly, there exists a unique solution if and only if A is non-singular. The challenge now is to find the largest
possible class of functions u for which this is true. This is still an unsolved problem. However, e.g., in [2,16,17]

Table 1
Globally supported radial basis functions

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Multiquadric
u(r) = (r2 + c2)�1/2 Inverse multiquadric
u(r) = r2 ln(r) Thin plate spline
uðrÞ ¼ e�c2r2

Gaussian
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