APpiied

Analytic solutions for a class of differential equation with delays depending on state

Jian Liu ${ }^{\text {a }}$, Jianguo $\mathrm{Si}^{\mathrm{b}, *}$
${ }^{\text {a }}$ School of Science, Jinan University, Jinan, Shandong 250022, PR China
${ }^{\text {b }}$ Department of Mathematics, Shandong University, Jinan, Shandong 250100, PR China

Abstract

In this paper, we study existence of analytic solutions of a class of the differential equation with state-dependent delays

$$
x^{\prime}(z)=\sum_{j=0}^{k} \sum_{t=1}^{\infty} C_{t, j}(z)\left(x^{[j]}(z)\right)^{t}+G(z)
$$

in the complex field \mathbb{C}. By constructing a convergent power series solution $y(z)$ of an auxiliary equation of the form

$$
\alpha y^{\prime}(\alpha z)=y^{\prime}(z)\left[\sum_{j=0}^{k} \sum_{t=1}^{\infty} C_{t, j}(y(z))\left(y\left(\alpha^{j} z\right)\right)^{t}+G(y(z))\right]
$$

with $\alpha=G(0) \in \mathbb{C} \backslash\{0\}$, invertible analytic solutions of the form $y\left(\alpha y^{-1}(z)\right)$ for the original equation are obtained.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Differential equation with state-dependent delays; Analytic solution; Resonance; Diophantine condition; Brjuno condition

1. Introduction and hypotheses

Delay differential equation of the form

$$
\begin{equation*}
x^{\prime}(z)=f\left(z, x(z), x\left(z-\tau_{1}(z)\right), \ldots, x\left(z-\tau_{k}(z)\right)\right) \tag{1.1}
\end{equation*}
$$

have been lucubrated in $[1,2]$. However, such equations, when the delay functions $\tau_{j}(z)(j=0,1, \ldots, k)$ depend not only on the argument of the unknown function, but also state, $\tau_{j}(z)=\tau_{j}(z, x(z))$, have been relatively little researched. In this paper, we will discuss the existence of invertible analytic solutions to a class of functional differential equation of the form

$$
\begin{equation*}
x^{\prime}(z)=\sum_{j=0}^{k} \sum_{t=1}^{\infty} C_{t, j}(z)\left(x^{[j]}(z)\right)^{t}+G(z) \tag{1.2}
\end{equation*}
$$

[^0]in the complex field, where $x^{[j]}(z)$ denotes the j th iterate of $x(z)$. The above equation is a special case of (1.1), in which taking $f\left(z, y_{1}, \ldots, y_{k}\right)=\sum_{t=1}^{\infty} C_{t, 0}(z) z^{t}+\sum_{j=1}^{k} \sum_{t=1}^{\infty} C_{t, j}(z) y_{j}^{t}+G(z)$ and $\tau_{j}(z)=z-x^{[j-1]}(z)$. A distinctive feature of Eq. (1.2) is to include the sum of infinitely many terms in contrast to our previous considered equations [3,4,5,6,7].

Throughout this paper, we will assume that
(H1) Functions $C_{t, j}(z)(t \in \mathbb{N}, j=0,1, \ldots, k)$ and $G(z)$ are all analytic in $|z|<\sigma(\sigma>0)$, and for each $j=0,1, \ldots, k$, the series $\sum_{t=1}^{\infty} C_{t, j}\left(z_{1}\right) z_{2}^{t}$ converges for a definite pair of nonzero complex z_{1}, z_{2} with $\left|z_{1}\right|<\sigma$.
(H2) $G(0)=\alpha \in \mathbb{C} \backslash\{0\}$.
As our previous works $[3,4,5,6,7]$, we still reduce Eq. (1.2) with $x(z)=y\left(\alpha y^{-1}(z)\right)$, called the Schröder transformation sometimes, to the auxiliary equation

$$
\begin{equation*}
\alpha y^{\prime}(\alpha z)=y^{\prime}(z)\left[\sum_{j=0}^{k} \sum_{t=1}^{\infty} C_{t, j}(y(z))\left(y\left(\alpha^{j} z\right)\right)^{t}+G(y(z))\right] . \tag{1.3}
\end{equation*}
$$

By constructing a convergent power series solutions $y(z)$ of Eq. (1.3), invertible analytic solutions of the form $y\left(\alpha y^{-1}(z)\right)$ for Eq. (1.2) are obtained. Known in $[3,4,5,6,7]$, the existence of analytic solutions for such equations is closely related to the position of α in the complex plane. In this paper, we will distinguish three different cases on α :
(C1) $0<|\alpha|<1$;
(C2) $\alpha=\mathrm{e}^{2 \pi i \theta}, \theta \in \mathbb{R} \backslash \mathbb{Q}$ and θ is a Brjuno number [8,9]: $B(\theta)=\sum_{n=0}^{\infty} \frac{\log q_{n+1}}{q_{n}}<\infty$, where $\left\{p_{n} / q_{n}\right\}$ denotes the sequence of partial fraction of the continued fraction expansion of θ;
(C3) $\alpha=\mathrm{e}^{2 \pi \mathrm{i} q / p}$ for some integer $p \in \mathbb{N}$ with $p \geqslant 2$ and $q \in \mathbb{Z} \backslash\{0\}$, and $\alpha \neq \mathrm{e}^{2 \pi \mathrm{i} \xi / v}$ for all $1 \leqslant v \leqslant p-1$ and $\xi \in \mathbb{Z} \backslash\{0\}$.

We observe that α is inside the unit circle S^{1} in case ($\mathbf{C} 1$) but on S^{1} in the rest cases. More difficulties are encountered for α on S^{1} since the small divisor $\alpha^{n}-1$ is involved in the latter (2.4). Under Diophantine condition: " $\alpha=\mathrm{e}^{2 \pi \mathrm{i} \theta}$, where $\theta \in \mathbb{R} \backslash \mathbb{Q}$ and there exist constants $\zeta>0$ and $\delta>0$ such that $\left|\alpha^{n}-1\right| \geqslant \zeta^{-1} n^{-\delta}$ for all $n \geqslant 1$," the number $\alpha \in S^{1}$ is "far" from all roots of the unity and was considered in different settings [3,4,5,6,7]. Since then, we have been striving to give a result of analytic solutions for those α "near" a root of the unity, i.e., neither being roots of the unity nor satisfying the Diophantine condition. The Brjuno condition in (C2) provides such a chance for us. Moreover, we also discuss the so-called the resonance case, i.e. the case of (C3).

2. Auxiliary equation in cases (C1) and (C2)

In this section, we discuss local invertible analytic solutions of Eq. (1.3) with the initial condition

$$
\begin{equation*}
y(0)=0, \quad y^{\prime}(0)=\gamma \neq 0, \quad \gamma \in \mathbb{C} . \tag{2.1}
\end{equation*}
$$

In order to study the existence of analytic solutions of (1.3) under the Brjuno condition, we first recall briefly the definition of Brjuno numbers and some basic facts. As stated in [10], for a real number θ, we let $[\theta]$ denote its integer part and $\{\theta\}=\theta-[\theta]$ its fractional part. Then every irrational number θ has a unique expression of the Gauss' continued fraction

$$
\theta=d_{0}+\theta_{0}=d_{0}+\frac{1}{d_{1}+\theta_{1}}=\cdots
$$

denoted simply by $\theta=\left[d_{0}, d_{1}, \ldots, d_{n}, \ldots\right]$, where d_{j} 's and θ_{j}^{\prime} s are calculated by the algorithm: (a) $d_{0}=[\theta]$, $\theta_{0}=\{\theta\}$, and (b) $d_{n}=\left[\frac{1}{\theta_{n-1}}\right], \theta_{n}=\left\{\frac{1}{\theta_{n-1}}\right\}$ for all $n \geqslant 1$. Define the sequences $\left(p_{n}\right)_{n \in \mathbb{N}}$ and $\left(q_{n}\right)_{n \in \mathbb{N}}$ as follows:

$$
\begin{array}{lll}
q_{-2}=1, & q_{-1}=0, & q_{n}=d_{n} q_{n-1}+q_{n-2}, \\
p_{-2}=0, & p_{-1}=1, & p_{n}=d_{n} p_{n-1}+p_{n-2} .
\end{array}
$$

It is easy to show that $p_{n} / q_{n}=\left[d_{0}, d_{1}, \ldots, d_{n}\right]$. Thus, for every $\theta \in \mathbb{R} \backslash \mathbb{Q}$ we associate, using its convergence, an arithmetical function $B(\theta)=\sum_{n \geqslant 0} \frac{\log q_{n+1}}{q_{n}}$. We say that θ is a Brjuno number or that it satisfies Brjuno

https://daneshyari.com/en/article/4635622

Download Persian Version:
https://daneshyari.com/article/4635622

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: sijgmath@yahoo.com.cn, sijgmath@sdu.edu.cn (J. Si).

