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Abstract

Gauss quadrature rules for Cauchy principal value integrals with wavelets are established. By the construction of
orthogonal polynomials of wavelets and scaling functions as weight functions, the wavelet Gauss quadrature formulae
for Cauchy principal value integrals are introduced. Numerical examples are also presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, much progress has been made in establishing wavelet analysis as a competitive tool for
image analysis/compression and for the numerical treatment of operator equations. Nevertheless, there are
still some important problems which have not been solved satisfactorily yet. In this paper, we give a contri-
bution to one of these questions as we shall now explain. The numerical approximation of integrals containing
strongly singular integrals, in particular Cauchy principal value integrals, with wavelets or with the associated
scaling functions, is a major issue when wavelet analysis is used to boundary integral approach for many types
of differential equations. The methods connected to Cauchy principal value integrals have been addressed very
intensively (see, [1–3] and references therein). However, this usually leads to serious trouble whenever these
methods are used directly to the integrals with wavelets or with scaling functions. First of all, neither the wave-
lets nor the scaling functions are necessarily very smooth so that a classical quadrature rule may not perform
satisfactorily. Moreover, in many cases, these functions are not know explicitly but only via certain functional
equations from which the function value have to be computed or approximated. This is possible in principle,
however, these kinds of functions evaluations may be expensive and/or inaccurate.

So far, several approached to this problem have been suggested. Using scaling functions as weight func-
tions, Sweldens and Piessens [4,5] obtained the Newton–Cotes type quadrature formulae for wavelet inte-
grals. Gauss type quadrature rules, owing to their optimization to nodes collocation, can get the optimal
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degree of exactness. Therefore, many attentions have been paid to construct Gauss quadrature rules for
wavelet integrals. The first approach in this direction was given by Gautschi et al. [6]. However their
approach only works for positive refinable functions with some smoothness. In order to construct Gauss
quadrature formulae for wavelets and scaling functions, which do not satisfy the non-negative condition
of weight function, a ‘‘lifting trick’’ is used by Barinka et al. [7,8] and finally a general class of wavelet Gauss
quadrature rules are obtained.

Motivated by the ideas mentioned above, orthogonal polynomials have been constructed with wavelets or
scaling functions as weight function. And finally, Gauss quadrature rules for Cauchy principal value integrals
with wavelets or scaling functions are derived. By far, to the best of our knowledge, no Gauss type quadrature
rules are available for Cauchy principal value integrals with wavelets or scaling functions. This paper is orga-
nized as follows. In Section 2, some of the basic properties of wavelets related to this paper are briefly intro-
duced. In Section 3, the construction of Gauss quadrature rules for wavelet and scaling function integrals are
discussed in detail. Then Gauss quadrature rule for Cauchy principal value integrals with wavelets or scaling
functions are obtained in Section 4. In Section 5, the results of the applications of these quadrature rules to
some numerical examples are shown. Finally, a concise conclusion is given in Section 6.

2. Wavelet functions

Wavelets are usually constructed by means of a multiresolution analysis (MRA) introduced by Mallat. The
fundamental theory of MRA and wavelet analysis can be found in many references, e.g. [9–11]. We shall
briefly recall the basic properties of wavelets as far as it is needed for our purpose.

Let w(x) and u(x) be the wavelet and the associated scaling function respectively. Their two-scale relations
are given by

uðxÞ ¼
X
j2Z

hjuð2x� jÞ; ð1Þ

wðxÞ ¼
X
j2Z

gjuð2x� jÞ; ð2Þ

where hjs and gjs satisfy
P

jhj ¼ 2; gl ¼ ð�1Þjh1�j. For compactly supported wavelet and scaling function, we
have

SuppðhjÞ ¼ fj 2 Zjhj 6¼ 0g � ½m1;m2�; ð3Þ
SuppðgjÞ ¼ fj 2 Zjgj 6¼ 0g � ½n1; n2�: ð4Þ

Moreover, the scaling function satisfiesZ þ1

�1
uðxÞ ¼ 1;

X
j2Z

uðx� jÞ ¼ 1: ð5Þ

3. Gauss quadrature formula for wavelets weight functions

The classical Gauss quadrature formula isZ a

b
f ðxÞxðxÞdx � In

xðf Þ ¼
Xn

i¼1

sif ðxiÞ; ð6Þ

where knots xi and weights si are determined by the weight function x(x), which is in general only required to
be non-negative.

Defining the inner product corresponding to x(Æ) P 0 as

ðf ; gÞx ¼
Z a

b
f ðxÞgðxÞxðxÞdx ð7Þ
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