

Available online at www.sciencedirect.com

Applied Mathematics and Computation 186 (2007) 460-468

www.elsevier.com/locate/amc

Dynamics for a class of general hematopoiesis model with periodic coefficients

Xiao Wang *, Zhixiang Li

Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha 410073, PR China

Abstract

Sufficient conditions are obtained for the existence and global attractivity of a unique positive periodic solution $\tilde{x}(t)$ of

$$x'(t) = -a(t)x(t) + \frac{b(t)}{1 + x^n(t - \tau(t))}, \quad t > 0,$$
(*)

where $n \ge 1$, *a* and *b* are continuous positive periodic function. Also, some sufficient conditions are established for oscillation of all positive solutions of (*) about $\tilde{x}(t)$. For the proof of existence and uniqueness of $\tilde{x}(t)$, the method used here is better than contraction mapping principle.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Positive periodic solution; Cone; Oscillation; Global attractivity

1. Introduction

The purpose of the present paper is to investigate the existence and global attractivity of unique positive solution $\tilde{x}(t)$ of the following equation with periodic coefficients:

$$x'(t) = -a(t)x(t) + \frac{b(t)}{1 + x^n(t - \tau(t))}, \quad n > 1.$$
(1.1)

Meanwhile, the oscillation of every positive solution of (1.1) about $\tilde{x}(t)$ will be also studied. It is necessary to consider behaviors of all positive solutions of (1.1). In fact, (1.1) is one of generations of hematopoiesis models

$$x'(t) = -ax(t) + \frac{b}{1 + x^n(t - \tau)}, \quad n > 0,$$
(1.2)

which (after some transformations) was first proposed by Mackey and Glass [10] to describe some physiological control systems. The global attractivity of positive steady solution K of (1.2) and the oscillatory behavior

* Corresponding author.

0096-3003/\$ - see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2006.07.109

E-mail addresses: wxiao_98@yahoo.com.cn (X. Wang), zhxli02@yahoo.com.cn (Z. Li).

of all positive solution about K have been studied. See Karakostas et al. [5], Kuang [7], Saker [11] and Zaghrout et al. [16], for instance. For further investigation in this area, for example, the delay differential equations

$$x'(t) = -a(t)x(t) + \frac{b(t)x^{m}(t - k\omega)}{1 + x^{n}(t - k\omega)},$$
(1.3)

where m = 0,1 and n > m, a(t) and b(t) are positive ω -periodic functions, and

$$x'(t) = -a(t)x(t) + b(t) \int_0^\infty K(s) \frac{1}{1 + x^n(t-s)} \mathrm{d}s, \quad n > 0,$$
(1.4)

where $K: [0, \infty) \to [0, \infty)$, and a(t) and b(t) are positive ω -periodic functions. In [12], the author not only obtained that (1.3) had a unique positive periodic solution $\tilde{x}(t)$ under some assumptions when k = 0 but also studied oscillation of all positive solutions of (1.3) about $\tilde{x}(t)$ and global attractivity of $\tilde{x}(t)$. And some sufficient conditions have been obtained by Yang and Weng [15] for the existence and global attractivity of a positive periodic solution of (1.4).

As far as we know, though the existence of positive periodic solution of (1.1) has been already done by Jiang and Wei [4] and Wan et al. [13], other behaviors of solutions of (1.1) have never been studied. Motivated by [2,6,9], in this paper we shall investigate the existence and uniqueness of positive periodic solution $\tilde{x}(t)$ of (1.1) by using a fixed theorem in cone which is different from that used in [4,13,14] and also show that the method used here is better than contraction mapping principle. And we shall prove that if $\tau(t) \equiv \tau$, then $\tilde{x}(t)$ is a global attractor and give some sufficient conditions to guarantee that every positive solution oscillates about $\tilde{x}(t)$.

Note that if $\tau(t) = k\omega$ in (1.1), then (1.1) reduces to (1.3) for m = 0 and n > 1. For this case, our main results complement that in [12].

Throughout this paper, in (1.1), we always suppose that a(t), b(t) and $\tau(t)$ are positive continuous ω -periodic functions on R.

For convenience, we also need to introduce a few notations. Let

$$\begin{split} G(t,s) &= \frac{\exp(\int_{t}^{s} a(r) dr)}{\exp(\int_{0}^{\omega} a(r) dr) - 1}, \quad s \in [t, t + \omega], \\ N &= G(t,t) = \min_{t \in [0,\omega], s \in [t,t+\omega]} \{G(t,s)\} \leqslant \max_{t \in [0,\omega], s \in [t,t+\omega]} \{G(t,s)\} = G(t,t+\omega) = M, \\ h^{*} &= \max_{t \in [0,\omega]} h(t), \quad h_{*} = \min_{t \in [0,\omega]} h(t), \quad \text{and} \quad h = \int_{0}^{\omega} h(s) ds, \end{split}$$

where h(t) is a continuous ω -periodic function on R.

In view of the actual applications of (1.1), we shall only consider the solutions of (1.1) with initial condition

$$x(s) = \varphi(s) \quad \text{for } s \in [-\tau^*, 0], \quad \varphi \in C([-\tau^*, 0], [0, \infty)), \quad \varphi(0) > 0.$$
(1.5)

2. Some definitions and lemmas

The proofs of the main results in our paper are based on an application of fixed point theorem in cone (see [3]). To make use of fixed point theorem in cone, firstly, we need to introduce some definitions and lemmas. Let X be a real Banach space, P is a cone of X. The semi-order induced by the cone P is denoted by " \leq ". That is, $x \leq y$ if and only if $y - x \in P$ for any $x, y \in P$.

Definition 2.1. A cone *P* of *X* is said to be normal if there exists a positive constant δ such that $||x + y|| \ge \delta$ for any $x, y \in P$, ||x|| = ||y|| = 1.

Definition 2.2. *P* is a cone of *X* and *A*: $P \rightarrow P$ is an operator. *A* is called decreasing, if $\theta \le x \le y$ implies $Ax \ge Ay$, where θ denotes the zero element of *X*.

Download English Version:

https://daneshyari.com/en/article/4635640

Download Persian Version:

https://daneshyari.com/article/4635640

Daneshyari.com