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Abstract

The paper deals with convex parametric programming problems. In this paper convex parametric programming trans-
form to a neural network model and then we solve neural network model with one of numerical methods. Finally, simple
numerical examples are provided for the sake of illustration.
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1. Introduction

Optimization problems arise in a wide variety of scientific and engineering applications including signal pro-
cessing, system identification, filter design, function approximation, regression analysis, and so on. In many engi-
neering and scientific applications, the real-time solution of optimization problems is widely required. However,
traditional algorithms for digital computers may not be efficient since the computing time required for a solution
is greatly dependent on the dimension and structure of the problems. One possible and very promising approach
to real-time optimization is to apply artificial neural networks. Because of the inherent massive parallelism, the
neural network approach can solve optimization problems in running time at the orders of magnitude much fas-
ter than those of the most popular optimization algorithms executed on general-purpose digital computers.

Parametric programming models appear in mathematics, engineering, physics and other sciences when
some processes or systems depend on a parameter which this parameter can be change in a interval. Many
optimization problems are naturally cast as parametric problems; for instance, continuous time, optimal con-
trol problems subject to all time state constraints. In this paper, we design neural network and apply to solve
parametric programming problems. We show how linear and nonlinear parametric programming by using of
method told, will transform to a neural network model.

In 1985 and 1986 Hopfield and Tank [1,2] proposed a neural network for solving linear programming prob-
lems. Their seminal work has inspired many researchers to investigate alternative neural networks for solving
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linear and nonlinear programming problems. In 1987, Kennedy and Chua [3] proposed an improved model
that always guaranteed convergence. However, their new model converges to only an approximation of the
optimal solution. In 1990, Rodriguez-Vazquez et al. [4] proposed a class of neural networks for solving opti-
mization problems. In 1996, Wu et al. [5] introduced a new model that solves both the primal and dual prob-
lems of linear and quadratic programming problems. Their new model always globally converge to the
solutions of the primal and dual problems. In 2002, Xia et al. [6] introduced a recurrent neural network for
solving the nonlinear projection formulation. In 2004, Effati et al. [7] presented a new nonlinear neural net-
work that has a much faster convergence. Their new model is based on a nonlinear dynamical system.

2. Convex parametric programming problems

Let us consider the following parametric programming problem:

minimize f ðx; kÞ

subject to

hiðx; kÞ 6 0; i ¼ 1; . . . ;m ð1Þ

k 2 ½a; b�; a and b are constant:

where x 2 Rn, f (x,k) and hi (x,k)(i = 1, . . .,m) are convex functions with respect to the first argument. It is also
assumed that f, hi (i = 1, . . .,m) are twice continuously differentiable, and for each k 2 [a,b] problem (1) has
feasible solution.

Now problem (1) transform to a neural network model. In general, if f (x,k) is nonlinear and if the penalty
method is applied to solve (1), then we can obtain an unconstrained optimization problem:

min
x

P ðx; kÞ ¼ f ðx; kÞ þ k
2

Xm

i¼1

hþi ðx; kÞ
� �2

; ð2Þ

where k is a positive number and

hþi ðx; kÞ ¼ max
x
f0; hiðx; kÞg ði ¼ 1; . . . ;mÞ; k 2 ½a; b� is fixed:

Thus, the necessary condition for optimality of (2) for each k 2 [a,b] is:

oP ðx; kÞ
ox

¼ of ðx; kÞ
ox

þ k
Xm

i¼1

hþi ðx; kÞ
ohiðx; kÞ

ox
¼ 0: ð3Þ

We define the following neural network model:

x0ðt; kÞ ¼ � of ðxðtÞ; kÞ
ox

� k
Xm

i¼1

hþi ðxðtÞ; kÞ
ohiðxðtÞ; kÞ

ox
; ð4Þ

where

of ðx; kÞ
ox

¼ of
ox1

;
of
ox2

; . . . ;
of
oxn

� �T

and

ohiðx; kÞ
ox

¼ ohi

ox1

;
ohi

ox2

; . . . ;
ohi

oxn

� �T

:

Proposition 1. If for any k (2) has an optimal solution, and if for system (4) we can find a state variable x(t,k)

such that the neural network (4) is asymptotically stable at x*(k), then the optimal solution to (2) will be the

equilibrium state of (4).
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