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Abstract

Over the past few years, researchers have developed a number of multiobjective evolutionary algorithms (MOEAs).
Although most studies concentrate on solving unconstrained optimization problems, there exit a few studies where
MOEAs have been extended to solve constrained optimization problems. Most of them were based on penalty functions
for handling nonlinear constraints by genetic algorithms. However the performance of these methods is highly problem-
dependent, many methods require additional tuning of several parameters.

In this paper, we present a new optimization algorithm, which is based on concept of co-evolution and repair algorithm
for handling nonlinear constraints. The algorithm maintains a finite-sized archive of nondominated solutions which gets
iteratively updated in the presence of new solutions based on the concept of e-dominance. The use of e-dominance also
makes the algorithms practical by allowing a decision maker to control the resolution of the Pareto set approximation
by choosing an appropriate e value, which guarantees convergence and diversity. The results, provided by the proposed
algorithm for six benchmark problems, are promising when compared with exiting well-known algorithms. Also, our
results suggest that our algorithm is better applicable for solving real-world application problems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

When attempting to optimize a decision in industrial and scientific applications, the designer is frequently
faced with the problem of achieving several design targets, some of which may be conflicting and noncommen-
surable and wherein a gain in one objective is at the expense of another. This problem can be generally reduced
to multiobjective optimization problems (MOPs) in operational description, which has been in the spotlight of
operations research communities over years. Usually, there is no unique optimal solution, but rather a set of
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alternative solutions and these solutions are optimal in the wider sense that no other solutions in decision
space are superior to them when all objectives are considered. They are known as Pareto-optimal solutions,
also termed nondominated noninferior, admissible, or efficient solutions [20].

During the past decade, various multiobjective evolutionary algorithms (MOEAs) have been proposed and
applied in MOPs [8]. A representative collection of these algorithms includes the vector evaluated genetic algo-
rithm (VEGA) by Schaffer [25], the niched Pareto genetic algorithm (NPGA) [12] and the nondominated sort-
ing genetic algorithm (NSGA) by Srinivas and Deb [26], the nondominated sorting genetic algorithm II
(NSGA-II) by Deb et al. [3], the strength Pareto evolutionary algorithm (SPEA) by Zitzler and Thiele [28],
the strength Pareto evolutionary algorithm II (SPEA-II) by Zitzler et al. [29], the Pareto archived evolution
strategy (PAES) by Knowles and Corne [14] and the memetic PAES (M-PAES) by Knowles and Corne
[15]. Although these MOEAs differ from each other in both exploitation and exploration, they share the com-
mon purpose, searching for a near-optimal, well-extended and uniformly diversified Pareto-optimal front for a
given MOP. However, this ultimate goal is far from being accomplished by the existing MOEAs as docu-
mented in the literature, e.g., [8].

On the other hand, there exist a few studies where an MOEA is specifically designed for handling con-
straints. Among all methods, the usual penalty function approach [13,18,19] where a penalty proportional
to the total constraint violation is added to all objective functions. When applying this procedure, all con-
straints and objective functions must be normalized.

Deb et al. [3,5] defined a constraint-domination principle, which differentiates from feasible solutions dur-
ing the nondominated sorting procedure.

Kurpati et al. [16] suggested four constraint handling improvements for MOGA. These improvements are
made in the fitness assignment stage of a MOGA and are all based upon a ‘‘Constraint-First-Objective-Next’’
model.

Chafekar et al. [6] propose two approaches for solving constrained multiobjective optimization problems
using steady state GAs. One method called objective exchange genetic algorithm for design optimization
(OEGADO) runs several GAs concurrently with each GA optimizing one objective and exchanging informa-
tion about its objective with the others. The other method called objective switching genetic algorithm for
design optimization (OSGADO) runs each objective sequentially with a common population for all objectives.
Despite all these developments, there seem to be not enough studies concerning procedure for handling
constraints.

In this paper, we present a new optimization system (IT-CEMOP), which is based on concept of co-evolu-
tion and repair algorithm for handing constraints. Also, it is based on the e-dominance concept which main-
tains a finite-sized archive of nondominated solutions which gets iteratively updated according to the chosen
e-vector, also it guarantees convergence and diversity.

The remainder of the paper is organized as follows. In Section 2 we describe some preliminaries on MOPs,
and in Section 3 we present constraint multiobjective optimization via genetic algorithm. Experimental results
are given and discussed in Section 4. Section 5 indicates our conclusion and notes for future work.

2. Preliminaries

2.1. Problem formulation

A general multiobjective optimization problem is expressed by
MOP:

Min F ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞT

s:t: x 2 S

x ¼ ðx1; x2; . . . ; xnÞT
ð1Þ

where ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ are the m objectives functions, (x1,x2, . . .,xn) are the n optimization parameters,
and S 2 Rn is the solution or parameter space. Obtainable objective vectors, {F(x)jx 2 S} are denoted by K, so
{F:S! K}, S is mapped by F onto K. This situation is represented in Fig. 1 for the case n = 2, m = 3.
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