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Abstract

This paper provides a foundation of the method of fundamental solutions (MFS) for the Options Pricing models gov-
erned by the Black–Scholes equation in which both the European option and American options are considered. In the solu-
tion procedure, no artificial boundary conditions are imposed for both datum and infinite sides of the stock prices. In the
cases of the European options, no time marching procedures are required and numerical results are verified with the exact
solutions. Since the free boundary conditions are considered for the American options, boundary update procedure is thus
applied. At the same time, numerical results are compared with the results in the literatures. These numerical results indi-
cate the MFS is an effective and robust meshless numerical solution for solving the Options Pricing models.
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1. Introduction

We consider the Black–Scholes model for both European and American options, which is firstly proposed
in 1973 by Black and Scholes [1]. It is well known that American options involve the so-called free boundary
conditions. Accordingly, closed form solutions rarely exist and numerical methods should be applied. Tradi-
tional numerical methods have been applied to the Black–Scholes model successfully. Geske and Shastri [2] as
well as Wu and Kwok [3] developed the finite difference method for the American options valuation. On the
other hand, Cox et al. [4] utilized the binomial method. In addition, Huang et al. [5] adopted the integral equa-
tion method. Moreover, Broadie and Detemple [6] wrote a review paper in the comparison for some of these
numerical methods.
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Recently, Hon and Mao [7] as well as Marcozzi et al. [8] utilized the multi-quadric method (MQ) to solve
the Black–Scholes model successfully. Roughly speaking, meshless numerical methods can be divided into two
categories. The first one is domain-type method in which both the differential equations and boundary con-
ditions are approximated, such as the MQ, and the second one is boundary-type method where only boundary
conditions are collocated. In this paper, we develop the method of fundamental solutions (MFS), which is a
boundary-type meshless numerical method, to solve the Black–Scholes model.

The MFS, which is first proposed in 1964 by Kupradze and Aleksidze [9], has become a versatile numerical
scheme to solve well-posed problems. This method is free from treatments of singularities, meshes, and numer-
ical integrations. The concept of the MFS is to decompose the solutions of the partial differential equations by
superposition of the fundamental solutions with proper intensities. Here, the intensities are the unknown
parameters, which can be obtained by collocating known augmented data on the boundary. In 1995, Golberg
[10] used the MFS to obtain numerical solutions of the Poisson equation. Fairweather and Karageorghis [11]
and Fairweather et al. [12] solved the elliptic boundary value problems and scattering and radiation problems,
respectively, by the MFS. Overall, Fairweather and Karageorghis [11], Fairweather et al. [12] as well as Tsai
[13] have written some review articles for the MFS.

The Black–Scholes model is a partial differential equation, which can be transformed to the advection–
diffusion equation as addressed by Marcozzi et al. [8]. Chen et al. [14] applied the MFS for diffusion equations
by using the modified Helmholtz fundamental solution. On the other hand, Tsai [13] and Young et al. [15,16]
solved the diffusion equation by the MFS based on the diffusion fundamental solution. In this paper, we pro-
vide a general formulation of the MFS based on the advection–diffusion fundamental solution to solve the
Options Pricing modes of multi-assets. In our formulations, the far field boundary conditions are automati-
cally satisfied by the fundamental solution. Moreover, Marcozzi et al. [8] proved no artificial datum boundary
condition should be applied. Thus, no time marching procedures are required in our formulation of the Euro-
pean options. For the American options, boundary update procedure is exploited to solve the free boundary
conditions.

The organization of this paper is as follows. In Section 2, we consider the MFS formulations for European
options of multi-assets. In Section 3, the formulation is extended to American options. Numerical results and
discussions are addressed in Section 4. In this section, the following numerical experiments are carried out:
European options of single asset, European options of two assets, and American options of single asset. Then,
conclusions are stated in Section 5.

2. MFS formulations for European options

2.1. Canonical form

This section provides the MFS formulation for European Options Pricing model. A bracket option is an
option whose price is based on multiple underlying assets. We assume there are n such assets whose price
at time t is denoted by S1(t), S2(t), . . . ,Sn(t). The value P(S1,S2, . . . ,Sn, t) of the European option can be deter-
mined by solving the following partial differential equation:
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where r2
i is the volatility of assets i, qij is the correlation between asset i and j, and r is the risk free interest rate. Let

T be the time of expiry and X be the exercise price of the option, we then have the following terminal condition:

P ðS1; S2; . . . ; Sn; T Þ ¼ F ðS1; S2; . . . ; Sn;X Þ; ð2Þ

where F(S1,S2, . . . ,Sn,X) is the payoff function. In the numerical experiments of this paper, we adopt F(S,X) =
max{X � S, 0} for one asset as proposed by Wilmott [17] and F(S1,S2,X) = max{X � min {S1,S2},0} for two
assets, whose exact solutions can be found in Stultz [18] and Johnson [19]. In which, the former is defined by
MODEL I and the later is denoted by MODEL II.
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