
An efficient Montgomery exponentiation algorithm
by using signed-digit-recoding and folding techniques

Der-Chyuan Lou a, Jui-Chang Lai a, Chia-Long Wu b,*, Te-Jen Chang a

a Department of Electrical Engineering, Chung Cheng Institute of Technology, National Defense University,

Tahsi, Taoyuan 33509, Taiwan
b Department of Aviation and Communication Electronics, Chinese Air Force Institute of Technology, Kaohsiung 82047, Taiwan

Abstract

The motivation for designing fast modular exponentiation algorithms comes from their applications in computer sci-
ence. In this paper, a new CSD-EF Montgomery binary exponentiation algorithm is proposed. It is based on the Mont-
gomery algorithm using the canonical-signed-digit (CSD) technique and the exponent-folding (EF) binary exponentiation
technique. By using the exponent-folding technique of computing the common parts in the folded substrings, the same
common part in the folding substrings can be simply computed once. We can thus improve the efficiency of the binary
exponentiation algorithm by decreasing the number of modular multiplications. Moreover, the ‘‘signed-digit representa-
tion’’ has less occurrence probability of the nonzero digit than binary number representation. Taking this advantage,
we can further effectively decrease the amount of modular multiplications and we can therefore decrease the computational
complexity of modular exponentiation. As compared with the Ha–Moon’s algorithm 1.261718m multiplications and the
Lou-Chang’s algorithm 1.375m multiplications, the proposed CSD-EF Montgomery algorithm on average only takes
0.5m multiplications to evaluate modular exponentiation, where m is the bit-length of the exponent.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Montgomery algorithm; Modular exponentiation; Exponent-folding technique; Algorithm analysis; Canonical-signed-digit
recoding

1. Introduction

Many public-key algorithms [1–3] require the implementation of modular multiplication for operands of
1024 bits or more in length. Taking the RSA cryptosystem [1] for example, the public and private keys are
functions of a pair of large prime numbers. The encryption and decryption operations are accomplished by
modular exponentiation and can be described as follows. Given M (plain text), E (public key), D (private

0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2006.06.089

* Corresponding author.
E-mail addresses: dclou@ccit.edu.tw (D.-C. Lou), chialongwu@seed.net.tw (C.-L. Wu).

Applied Mathematics and Computation 185 (2007) 31–44

www.elsevier.com/locate/amc

mailto:dclou@ccit.edu.tw
mailto:chialongwu@seed.net.tw


key), and N (modulus), compute ciphertext C �ME modN for encryption and M � CD modN for decryption.
These operations are realized by multiple modular multiplications based on the value of the exponents E and
D, where D · Emod/(N) = 1 and /(N) is an Euler’s totient function [4].

As efficient computation of the modular exponentiations is very important and useful for many cryptosys-
tems, we need fast multiplication designs or novel exponentiation algorithms such as the Montgomery reduc-
tion method [5], high-radix method [6], addition chains method [7], square-and-multiply (binary) method [8],
exponent-folding (EF) method [9,10], residue number conversion method [11], key size partitioning method
[12], and signed-digit-recoding method [13]. Moreover, a detailed survey of fast exponentiation techniques
has been given in [14].

The rest of the paper is organized as follows. In Section 2, we first review and introduce some famous works
of the modular exponentiation. Then, we introduce the concept of canonical-signed-digit (CSD) arithmetic
and Montgomery algorithm and propose the CSD-EF Montgomery algorithm for fast modular exponentia-
tion in Section 3. The computational complexity of the proposed algorithm is detailed analyzed in Section 4.
Finally, we conclude our work in Section 5.

2. The modular exponentiation

Modular exponentiation and modular multiplication of large integers with large exponent and modulus
(usually longer than 1024 bits) is one of the most important operations in several well-known cryptographic
algorithms. The modular exponentiation can be implemented using a series of modular squaring and modular
multiplication operations. Therefore, modular exponentiation can be time-consuming, and is often the dom-
inant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication.

There are two ways to reduce the execution time of the modular exponentiation operation. One approach is
simply to reduce the numbers of modular exponentiation. The other approach is to reduce the execution time
of each modular multiplication. In this paper, we concentrate on the first approach to effectively reduce the
number of modular multiplications required in modular exponentiation operation.

2.1. The binary modular exponentiation algorithms

The binary modular exponentiation method is also known as the ‘‘repeated square-and-multiply’’ method
[8]. There are two commonly used algorithms (with different exponent-scanning patterns) that can convert the
modular exponentiation into a sequence of modular multiplications, that is, the LSB (least significant bit) bin-
ary algorithm and the MSB (most significant bit) binary algorithm [5]. Assume m denotes the bit-length of the
exponent E, the exponent E can be expressed in binary representation, i.e., E ¼

Pm�1
i¼0 ei � 2i, where ei 2 {0, 1}.

The LSB binary algorithm computes the exponentiation starting from the least significant bit of the exponent
E and proceeding to the left, which is depicted as follows.

LSB binary modular exponentiation algorithm

Input: Message: M, Modulus: N, Exponent: E is an m-bit integer
Output: Ciphertext: C �ME (mod N)
C = 1; S = M;
begin

for i = 0 to m � 1 do /*scan from right to left*/
begin

if (ei = 1) then C � C · S (mod N); /*multiply*/
S � S · S (mod N); /*square*/

end;
end.

Different from the LSB binary modular exponentiation algorithm, the MSB binary modular exponentiation
algorithm computes exponentiation starting from the most significant bit of the exponent and proceeding to
the right, which is depicted as follows.

32 D.-C. Lou et al. / Applied Mathematics and Computation 185 (2007) 31–44



Download English Version:

https://daneshyari.com/en/article/4636256

Download Persian Version:

https://daneshyari.com/article/4636256

Daneshyari.com

https://daneshyari.com/en/article/4636256
https://daneshyari.com/article/4636256
https://daneshyari.com

