The block smoothing method for estimating the spectral radius of a nonnegative matrix

Zhi-Ming Yang
Mathematics and Information College, Gansu Lianhe University, Lanzhou 730000, PR China

Abstract

Utilizing the block matrix, a new estimate for the spectral radius of a nonnegative matrix is presented. A series of new matrices are derived that preserve the spectral radius while their minimum row sums are on the increase and the maximum row sums on the decrease. Numerical examples are provided to illustrate the effectiveness of this approach. © 2006 Elsevier Inc. All rights reserved.

Keywords: Nonnegative matrix; Block matrix; Spectral radius; Smoothing method

1. Introduction

Let A be a nonnegative matrix of order n with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. The set of $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ is called the spectrum of A. For an $n \times n$ nonnegative matrix A, a fundamental matrix problem is to estimate spectral radius, $\rho(A)=\max _{i}\left|\lambda_{i}\right|$. So it is interesting to develop methods giving rise to bounds for $\rho(A)$. It is well known that for such a matrix A, the following inequality holds ([1,2]):

$$
\begin{equation*}
\min _{i} R_{i}=r(A) \leqslant \rho(A) \leqslant R(A)=\max _{i} R_{i}, \tag{1.1}
\end{equation*}
$$

where $R_{i}=\sum_{j=1}^{n} a_{i j}, 1 \leqslant i \leqslant n$.
This result bears a great idea for estimating the spectral radius by using the elements of A in a simple way. The question arising is how to get sharper bounds by increasing the minimum row sum and decreasing the maximum row sum. This paper concentrates on developing a new method of getting sharper bounds and even a fairly good approximate value for $\rho(A)$, utilizing only the elements of a series of block matrices.

2. Partitioning matrix and notation

In this section, we introduce the method for partitioning a matrix and provide some notation, which will be used later.

[^0]Assume that n is the product of k numbers: $n_{1}, n_{2}, \ldots, n_{k}$, that is

$$
n=n_{1} \times n_{2} \times \cdots \times n_{k} .
$$

Without loss of generality, we suppose that $n_{i}(i=1,2, \ldots, k)$ are prime numbers and can be ordered:

$$
n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k} .
$$

In this case, an $n \times n$ nonnegative matrix A can be partitioned into as follows:

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n_{1}} \\
A_{21} & A_{22} & \cdots & A_{2 n_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
A_{n_{1} 1} & A_{n_{1} 2} & \cdots & A_{n_{1} n_{1}}
\end{array}\right]
$$

where $A_{i j}\left(i, j=1,2, \ldots, n_{1}\right)$ are matrices of order $\frac{n}{n_{1}}$. Now we add the elements which are at the same position of each $A_{i j}$ and then divided by n_{1}^{2}, thus, a small matrix of order $n_{2} \times n_{3} \times \cdots \times n_{k}$ can be obtained, we denote it as

$$
A^{(1)}=\frac{1}{n_{1}^{2}} \sum_{i, j=1}^{n_{1}} A_{i j}=\left(a_{i j}^{(1)}\right)
$$

and it is easy to prove the following inequalities:

$$
\begin{equation*}
R\left(A^{(1)}\right) \leqslant \frac{1}{n_{1}} R(A), \quad r\left(A^{(1)}\right) \geqslant \frac{1}{n_{1}} r(A), \tag{2.1}
\end{equation*}
$$

where $R\left(A^{(1)}\right)=\max _{i} R_{i}\left(A^{(1)}\right), r\left(A^{(1)}\right)=\min _{i} R_{i}\left(A^{(1)}\right), R_{i}\left(A^{(1)}\right)=\sum_{j=1}^{\frac{n}{n_{1}}} a_{i j}^{(1)}$ for $i=1,2, \ldots, \frac{n}{n_{1}}$. Analogously, we partition $A^{(1)}$ into

$$
A^{(1)}=\left[\begin{array}{cccc}
A_{11}^{(1)} & A_{12}^{(1)} & \cdots & A_{1 n_{2}}^{(1)} \\
A_{21}^{(1)} & A_{22}^{(1)} & \cdots & A_{2 n_{2}}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n_{2} 1}^{(1)} & A_{n_{2} 2}^{(1)} & \cdots & A_{n_{2} n_{2}}^{(1)}
\end{array}\right],
$$

where $A_{i j}^{(1)}\left(i, j=1,2, \ldots, n_{2}\right)$ are $\frac{n}{n_{1} n_{2}} \times \frac{n}{n_{1} n_{2}}$ matrices. Again we add the elements at the same position of each $A_{i j}^{(1)}$ and divided by n_{2}^{2}, then we can get a matrix of order $n_{3} \times n_{4} \times \cdots \times n_{k}$, and it could be partitioned into an $n_{3} \times n_{3}$ block matrix, i.e.,

$$
A^{(2)}=\frac{1}{n_{2}^{2}} \sum_{i, j=1}^{n_{2}} A_{i j}^{(1)}=\left(a_{i j}^{(2)}\right)=\left(A_{i j}^{(2)}\right)_{n_{3} \times n_{3}},
$$

where $A_{i j}^{(2)}\left(i, j=1,2, \ldots, n_{3}\right)$ are $\frac{n}{n_{1} n_{2} n_{3}} \times \frac{n}{n_{1} n_{2} n_{3}}$ matrices.
Let $R\left(A^{(2)}\right)=\max _{i} R_{i}\left(A^{(2)}\right), r\left(A^{(2)}\right)=\min _{i} R_{i}\left(A^{(2)}\right), R_{i}\left(A^{(2)}\right)=\sum_{j=1}^{\frac{n}{1 n^{n}} 2} a_{i j}^{(2)}$ for $i=1,2, \ldots, \frac{n}{n_{1} n_{2}}$, then the following inequalities hold:

$$
\begin{equation*}
R\left(A^{(2)}\right) \leqslant \frac{1}{n_{2}} R\left(A^{(1)}\right), \quad r\left(A^{(2)}\right) \geqslant \frac{1}{n_{2}} r\left(A^{(1)}\right) . \tag{2.2}
\end{equation*}
$$

At last, we will get an $n_{k} \times n_{k}$ matrix

$$
A^{(k-1)}=\frac{1}{n_{k-1}^{2}} \sum_{i, j=1}^{n_{k-1}} A_{i j}^{(k-2)}=\left(a_{i j}^{(k-1)}\right)_{n_{k} \times n_{k}}
$$

and two inequalities:

$$
\begin{equation*}
R\left(A^{(k-1)}\right) \leqslant \frac{1}{n_{k-1}} R\left(A^{(k-2)}\right), \quad r\left(A^{(k-1)}\right) \geqslant \frac{1}{n_{k-1}} r\left(A^{(k-2)}\right), \tag{2.3}
\end{equation*}
$$

where $R\left(A^{(k-1)}\right)=\max _{i} R_{i}\left(A^{(k-1)}\right), r\left(A^{(k-1)}\right)=\min _{i} R_{i}\left(A^{(k-1)}\right)$ and $R_{i}\left(A^{(k-1)}\right)=\sum_{j=1}^{n_{k}} a_{i j}^{(k-1)}$ for $i=1,2, \ldots, n_{k}$.

https://daneshyari.com/en/article/4636276

Download Persian Version:

https://daneshyari.com/article/4636276

Daneshyari.com

[^0]: E-mail addresses: yzhming0809@163.com, yangzm0202@msn.com

