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Abstract

We consider a uniform finite difference method on Shishkin mesh for a quasilinear first order singularly perturbed
boundary value problem (BVP) with integral boundary condition. We prove that the method is first order convergent
except for a logarithmic factor, in the discrete maximum norm, independently of the perturbation parameter. The param-
eter uniform convergence is confirmed by numerical computations.
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1. Introduction

In this paper we consider the following singular perturbation problem (BVP) with integral boundary
condition

eu0 þ f ðt; uÞ ¼ 0; t 2 I ¼ ð0; T �; T > 0; ð1:1Þ

uð0Þ ¼ luðT Þ þ
Z T

0

bðsÞuðsÞdsþ d; ð1:2Þ

where 0 < e 6 1 is the perturbation parameter, l and d are given constants. b(t) and f(t,u) are assumed to be
sufficiently continuously differentiable functions in I ¼ I [ ft ¼ 0g and I � R respectively and moreover

of
ou

P a > 0:

Note that the boundary condition (1.2) includes periodic and initial conditions as special cases. For e� 1 the
function u(t) has a boundary layer of thickness O(e) near t = 0 (see Section 2).
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Differential equations with integral boundary conditions constitute a very interesting and important class of
problems and have been studied for many years. For a discussion of existence and uniqueness results and for
applications of problems with integral boundary conditions see, [7–10,12,16,17] and the references therein. In
[9,16,17] have been considered some approximating aspects of this kind of problems. But designed in the
above-mentioned papers algorithms are only concerned with the regular cases (i.e. when the boundary layers
are absent).

Differential equations with a small parameter e multiplying the highest order derivative terms are said to be
singularly perturbed and normally boundary layers occur in their solutions. The numerical analysis of singular
perturbation cases has always been far from trivial because of the boundary layer behavior of the solution.
Such problems undergo rapid changes within very thin layers near the boundary or inside the problem domain
[4,5,13–15]. It is well known that standard numerical methods for solving such problems are unstable and fail
to give accurate results when the perturbation parameter e is small. Therefore, it is important to develop suit-
able numerical methods to these problems, whose accuracy does not depend on the parameter value e, i.e.
methods that are convergence e-uniformly. For the various approaches on the numerical solution of differen-
tial equations with steep, continuous solutions we may refer to the monographs [14,5,15].

In this present paper, we analyze a finite difference scheme on a special piecewise uniform mesh (a Shishkin
mesh) for the numerical solution of the problem with integral boundary conditions (1.1) and (1.2). In Section
2, we state some important properties of the exact solution. The derivation of the difference scheme and mesh
introduction have been given in Section 3. In Section 4, we present the error analysis for approximate solution.
The method comprises a special non-uniform mesh, which is fitted to the initial layer and constructed a priori
in function of sizes of parameter e, the problem data and the number of corresponding mesh points. Uniform
convergence is proved in the discrete maximum norm. In Section 5, we formulate the iterative algorithm for
solving the discrete problem and give the illustrative numerical results. The technique to construct discrete
problem and error analysis for approximate solution are similar to those in [1–3].

Henceforth, C and c denote the generic positive constants independent of e and of the mesh parameter.
Such a subscripted constant is also independent of e and mesh parameter, but whose value is fixed.

2. The continuous problem

Lemma 2.1. Assume that the first derivative of f(t, u) in u is uniformly bounded. Moreover

pðeÞ ¼ 1� lAþ � b�Bþ P c0 > 0; ð2:1Þ

where

Aþ ¼
0; l 6 0;

ee�aT=e; l > 0;

�
Bþ ¼

0; b� 6 0;

a�1eð1� e�aT=eÞ; b� > 0;

�
b� ¼ max

I
bðxÞ:

Then the following estimates hold:

kuk1 6 C0; ð2:2Þ

where

C0 ¼ c�1
0 ðjlj þ kbk1Þa�1kF k1 þ c�1

0 jdj; kbk1 ¼
Z T

0

jbðtÞjdt;

F ðtÞ ¼ f ðt; 0Þ

and

ju0ðxÞj 6 C 1þ 1

e
e�

at
e

� �
; t 2 I ð2:3Þ

provided jof/otj 6 C for t 2 I and juj 6 C0.
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