Available online at www.sciencedirect.com
APPLIED

ScienceDirect MATHEMATICS
COMPUTATION

ELSEVIER Applied Mathematics and Computation 186 (2007) 1311-1321

www.elsevier.com/locate/amc

On the Hamiltonian cycle mapping onto 3-D
torus interconnection network based
on base-b reflected gray codes

Saleh H. Al-Sharaeh

Department of Computer Science, King Abdallah II for Information Technology, Jordan University, Amman, Jordan

Abstract

In this paper we present a 3D large volume simulation decomposition and mapping technique onto a 3D torus inter-
connection network, based on base-b reflected gray codes. Such simulation leads to fast execution plus an improvement of
total execution time. The minimization of the execution time of the simulation is due to minimization of packet routing in
the 3D interconnection torus network. Applying the algorithm on real 3D space plasma simulation of the Aurora region of
the Earth’s Ionosphere was observed to be almost ideal speedup. The efficiency of the implementations was shown to be
constant close to one, as the size of the 3D simulation increases.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Parallel simulation; Speedup; Plasma; Hamiltonian; Gray codes

1. Introduction

High Performance Applications (HPC) are the most demanding of computing power. Due to perceived
difficulties with programming in a multicomputing environment, interconnection topologies play a vital role
[1-4]. The Massively Parallel Processing (MPP) Cray T3D/T3E architecture employs a 3D torus interconnec-
tion topology. Each Processing Element (PE) has local memory. Such memory is physically distributed, but it
is logically shared because each PE can access any other PE memory without involving the microprocessor in
that PE [5,6]. Cray Research Inc. introduced the first phase which has 256 processors followed by the T3E with
1024 processors, and recently Cray XD1 [6] a shared memory system. In this new generation of MPP based on
3D torus interconnection topologies, each node has 16M bytes that are physically distributed, but are logically
shared. When a processor needs data at a certain address, which exists in another processor, that processor
number combined with the address requested will formulate the effective address, and then a very fast search
engine handles the communication without interrupting the computation processor. Latency can be effectively
hidden in this manner by transparently overlapping communication with computation, which makes this new
generation very effective and scalable.

E-mail address: salsharach@yahoo.com

0096-3003/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2006.07.163

mailto:salsharaeh@yahoo.com

1312 S.H. Al-Sharaeh | Applied Mathematics and Computation 186 (2007) 1311-1321

The aforementioned characteristics of the T3D make this kind of architecture suitable to our application,
and with a proper mapping methodology, the algorithm developed was ported to a 3-D torus (the Cray T3D
interconnection topology). The method based on base-b reflected Gray code minimized the inter-processor
communication delay.

2. Task assignment, mapping, and scheduling

The targeted hardware, Cray T3D, is made up of a set of processing nodes that are interconnected by some
form of interconnection topology, in this case 3D Torus. In a homogenous environment, the processing ele-
ments all have the same computing capability, and more often than not, the network is regular in structure. In
a heterogeneous environment, many of the computing engines differ from one another, the network may be
very irregular in shape and the nodes may be dispersed over long geographical distances.

In general, the act of allocating the task graph to the target topology can be described in terms of three
basic operations: assignment, scheduling, and mapping [5]. The assignment operation involves the clustering
or partitioning of tasks into processing groups in a manner that ensures a one-to-one correspondence between
the number of groups and the number of processing elements. Scheduling is the process of determining the
order in which the tasks (and possibly communications) are to execute within each processing group. The
mapping problem involves assigning processing groups to individual processing elements for execution, in a
way that match the communication structure present between groups with the topology of the inter-processor
communication network. Each of these three operations is NP complete and can occur in a static (preprocess-
ing) or dynamic (run time) environment. For many algorithms, optimal allocations can be made statistically
by carefully examining the structure of the algorithm. One technique that has been used successfully for such
problems employs base-b reflected Gray codes [7,8].

3. Parallel computing terminology

It is important that one understands how to evaluate the time complexity of a given algorithm, which is
often described using the big “O’ notation. The definition of the Order Notation “O” is as follows [9]. Assume
fand g are functions over the domain of the natural numbers. Then O(f(n)) [read “order at most f{(n)]is the set
of all g(n) such that there exist positive constants ¢ and ng so that |g(n)| < c¢f(n) for all n> ny.

The complexity of a parallel algorithm such as the total sum of #» numbers is a function of the problem size.
In a parallel representation, the execution time is the maximum over all inputs of size n, of the time elapsed
from when the first processor begins execution of its portion of the problem until the last processor terminates
execution. Determining the sum of # values on a sequential computer has time complexity O(n). Porting the
same algorithm on a parallel computer that has n/2 processors, the sum can be determined in order O(logn), if
the partial sums are computed in a treelike fashion [10].

Let S be a single parameter, which represents the effective size of a given algorithm. Then W(S) would be
the total workload (i.e. total number of computational operations) that is required by the best sequential algo-
rithm to solve the problem. The execution time of W(S) on a single processor is then T'(S) = W(S)/4, where 4
is the computational rate or capacity of the processor. Restructuring the problem for parallelism requires that
a portion of the original workload W, be assigned to each of the i processors in the system, with
W(S)=>_pW:(S). The mapping of the application problem onto P processors introduces extra overhead
and sometimes-extra workload that does not exist in the best sequential case. Let O, be the overhead function
associated with processor i. This overhead function reflects the time that each processor in the system is not
involved in useful computation. It includes the time spent performing redundant computations; the time spent
in communication and the time the processor is idle. Thus, the total overhead for P processors and problem
size S is equal to A(S,P) =)" ,0;. The parallel time 7(P) is then the time it takes the algorithm to run on P
processors, and it is given by

)

P

TP(S) =75

5 (1)

Download English Version:

https://daneshyari.com/en/article/4636565

Download Persian Version:

https://daneshyari.com/article/4636565

Daneshyari.com

https://daneshyari.com/en/article/4636565
https://daneshyari.com/article/4636565
https://daneshyari.com/

