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Abstract

Approaches to stochastic optimization have followed a variety of modeling philosophies, but little has been done to
systematically compare different models found in the literature. This article is concerned with the basic concepts (and a
comparison between them) underlying optimality under uncertainty, which is ubiquitous in all realistic problems of science
and engineering. Specifically, it discusses two basic ideas—the minimum (maximum) expected value criterion and the
expected minimum (maximum) value criterion—in a theoretical context. Illustrative applications are presented to justify
the theoretical results.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Problems of optimality under uncertainty occur frequently in a wide variety of real-world problems in sci-
ence, engineering and technology, which have probabilistic parameters, nondeterministic initial conditions,
uncertain input situations and models based on incomplete knowledge. Specifically, a large number of prob-
lems such as engineering design [1], supply-allocation [2], production planning [3] and scheduling [4], transpor-
tation [5], inventory network [6,7], finance [8], require that decisions be made in the presence of uncertainty.
Uncertainty, for instance, governs the prices of fuels, the availability of electricity, and the demand for chem-
icals. In other words, much of life involves making optimal choices under uncertainty, i.e., choosing the opti-
mal from some set of optional courses of action in uncertain situations. Several approaches to stochastic
optimization have been proposed [1,9–12]. Sahinidis [13] discusses the state of the art in optimization under
uncertainty, and notes the need for a systematic comparison of current methodologies.

The work of Huyse [1], which actually motivated our investigation, deals with the problem of airfoil shape
optimization. It requires the calculation of an optimum shape under the parametric uncertainty associated
with Mach number. They employ the MEV concept that optimizes the expectation of the objective/risk func-
tion subject to some expectation constraint. There is no reason why one should not consider the expectation of
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the optimized objective/risk function (EMV). Thus our study focuses, in a straightforward fashion, on a com-
parison between the EMV and MEV approaches.

The theory developed in the next two sections shows that the expectation and optimization operators are
not commutative and that EMV 6MEV for continuous objective functions. Moreover, if the randomness is
nonsymmetric or the functional to be minimized is nonlinear, the probability of having a lower risk (lower
value of the objective function) at the EMV design point compared to the MEV design strategy is greater than
50%. Applications to simple stochastic problems of free undamped vibrations, population growth, and non-
linear Burgers equation are considered, which verify the theoretical results.

2. Statement of the problem

Let ðX;F; PÞ be a probability space and let x be an F-measurable random variable. We denote by d the
design variable, whose domain is confined to a Banach space (X,kÆk). Let us consider a functional
J : X � X! R; which is assumed to have a minimum for any given value of the random variable x. The min-
imization problem under uncertainty consists in finding an optimal point d* 2 D � X, such that

Jðd�;xÞ ¼ min
d2D

Jðd;xÞ; for all x 2 X. ð1Þ

The problem of optimization under uncertainty (1) is quite challenging because it requires finding an optimum
point that minimizes the functional J (Æ,x) for all possible values of the random variable x. In general, one
may find different optimum design variables associated with different values of the random variable. In other
words, for different values x1, x2 of the random variable x, the corresponding optima d*(x1), and d*(x2) may
be different.

Once randomness is included in the formulation of the mathematical problem, it is not immediately clear
how to formulate a well-posed optimization problem. A number of convenient formulations of the problem
(1) are possible depending on when decisions must be taken relative to the realization of the random variable.
In the approach used and justified in [1], the best design or decision is the one which minimizes the overall risk,
and it is based on the Von Neumann–Morgenstern statistical decision theory [14]. In this case, the optimiza-
tion problem is posed as

min
d2D

EðJðd;xÞÞ

and the Bayes’ decision is given by

dMEV ¼def.
arg min

d2D
EðJðd;xÞÞ. ð2Þ

On the other hand, a practical solution to the minimization problem (1) may well be to ‘‘average’’ over the
entire range of optima, i.e., to consider the optimization problem and the optimum solution respectively to be

E min
d2D

Jðd;xÞ
� �

dEMV ¼
def. E arg min

d2D
Jðd;xÞ

� �
. ð3Þ

In our opinion, this new formulation (3), which we call the expected minimum value criterion (EMV), is a
more natural representation of the original problem under consideration (1). It is therefore of interest to exam-
ine how the EMV solution dEMV compares with the MEV solution dMEV. It is quite clear that the EMV cri-
terion is rather closer to the initial optimization problem, but does it give us a ‘‘better’’ optimum? The purpose
of the present article is to address this question, and to prove and exemplify the advantages of one versus the
other. The next section derives some theoretical results, and the following one presents some simple examples
in support of the theoretical results.

3. Theoretical results

This section concerns the comparison of the two optimum design points proposed earlier. Let us remark
first that the following inequality holds for any continuous objective function.
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