
Pricing multi-asset American-style options by memory
reduction Monte Carlo methods

Raymond H. Chan, Chi-Yan Wong *, Kit-Ming Yeung

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

When pricing American-style options on d assets by Monte Carlo methods, one usually stores the simulated asset prices
at all time steps on all paths in order to determine when to exercise the options. If N time steps and M paths are used, then
the storage requirement is d Æ M Æ N. In this paper, we give a simulation method to price multi-asset American-style options,
where the storage requirement only grows like (d + 1)M + N. The only additional computational cost is that we have to
generate each random number twice instead of once. For machines with limited memory, we can now use larger values of
M and N to improve the accuracy in pricing the options.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Memory reduction method; Monte Carlo method; Multi-asset; American-style options; Random number

1. Introduction

Monte Carlo method is one of the main methods for computing American-style options, see for instance
[12,2,3,9]. These algorithms are computationally inefficient because they require the storage of all asset prices
at all simulation times for all simulated paths. Thus the total storage requirement grows like O(dMN) where d

is the number of underlying assets, M is the number of simulated paths and N is the number of time steps. The
accuracy of the simulation is hence severely limited by the storage requirement.

The apparent difficulties in using Monte Carlo methods to price American-style options come from the
backward nature of the early exercise feature. There is no way of knowing whether early exercise is optimal
when a particular asset price is reached at a given time. One can look at this problem from another point of
view. In Monte Carlo method, the simulated paths are all generated in the time-increasing direction, i.e. they
start from the initial asset prices x0 and march to the expiry date according to a given geometric Brownian

0096-3003/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2005.11.108

* Corresponding author.
E-mail addresses: rchan@math.cuhk.edu.hk (R.H. Chan), cywong@math.cuhk.edu.hk (C.-Y. Wong), kmyeung@math.cuhk.edu.hk

(K.-M. Yeung).

Applied Mathematics and Computation 179 (2006) 535–544

www.elsevier.com/locate/amc

mailto:rchan@math.cuhk.edu.hk
mailto:cywong@math.cuhk.edu.hk
mailto:kmyeung@math.cuhk.edu.hk


motion. But since the pricing of American options is a backward process starting from the expiry date back to
x0, the usual approach is to save all the intermediate asset prices along all the paths.

In this paper, we use our simulation method in [4] for computing multi-asset American-style options that
does not require storing of all the intermediate asset prices. The storage is reduced from O(dMN) to
(d + 1)M + N only. Our main idea is to generate the paths twice: one in a forward sweep to establish the asset
prices at the expiry date, and one in a backward sweep that computes the intermediate asset prices only when
they are needed. The only additional cost in our method is that we have to generate each random number
twice instead of once. The resulting computational cost is less than twice of that of the methods where all
the intermediate asset prices are stored.

The remainder of this paper is organized as follows. Section 2 recalls the usual full-storage approach for com-
puting multi-asset American-style options. Section 3 gives some background about random number generators
in computers. In Section 4, we introduce our memory reduction method. In Section 5, we show how to use our
method to compute multi-asset American options by adopting it to the least-squares method proposed by Long-
staff and Schwartz [9]. Section 6 gives some numerical results to illustrate the effectiveness of our method.

We will use the MATLAB language [11] to explain how the codes are to be written as the language is easier to
comprehend. The corresponding commands in FORTRAN 90 [5] and MATHEMATICA [13] are given in Appendix A.

2. The full-storage method

As usual, we let the prices of d non-dividend paying assets x = (x1,x2, . . . ,xd)T follow the geometric Brown-
ian motion

dxk

xk
¼ r dt þ rk dW k; 1 6 k 6 d;

where r is the risk-free interest rate, rk is the volatility of asset k, and dWk is the Wiener process for asset k. By
Ito’s Lemma, we have

xkðt þ dtÞ ¼ xkðtÞ exp r � 1

2
r2

k

� �
dt þ

Xd

j¼1

vkj dW k

 !

¼ xkðtÞ exp r � 1

2
r2

k

� �
dt þ

ffiffiffiffiffi
dt
p Xd

l¼1

Vðk; lÞzðlÞ
 !

; ð1Þ

where xk(t) is the price of asset k at time t, z is a d-vector of standard normal random variables, and V ¼ ½vij� is
the volatility matrix. The volatility matrix V is given by

C ¼VVT;

and C ¼ ½cij� is the d-by-d covariance matrix with cij = qijrirj, where qij is the correlation coefficient between
dWi and dWj, see for instance [8].

In the Monte Carlo simulation, we divide the time horizon into N time steps with each having the length

Dt ¼ T � t0

N
;

where t0 is the current time and T is the expiry date of the option. Thus the time horizon is discretized as
t0 < t1 < � � � < tN = T where tj = t0 + jDt.

Let the asset prices at time t0 be x0 ¼ ðx1
0; x

2
0; . . . ; xd

0Þ
T. Given x0, we can simulate the price paths using (1).

More precisely, for asset k, 1 6 k 6 d, if we are to simulate M paths, then the ith path can be defined by the
recurrence:

Si
jðkÞ ¼ Si

j�1ðkÞ exp r � r2
k

2

� �
Dt þ

ffiffiffiffiffi
Dt
p Xd

l¼1

Vðk; lÞzi
jðlÞ

 !
; 1 6 i 6 M ; 1 6 j 6 N ; ð2Þ

536 R.H. Chan et al. / Applied Mathematics and Computation 179 (2006) 535–544



Download English Version:

https://daneshyari.com/en/article/4636945

Download Persian Version:

https://daneshyari.com/article/4636945

Daneshyari.com

https://daneshyari.com/en/article/4636945
https://daneshyari.com/article/4636945
https://daneshyari.com

