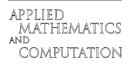


Available online at www.sciencedirect.com



Applied Mathematics and Computation 179 (2006) 688-695

www.elsevier.com/locate/amc

Solvability of *p*-Laplace equations subject to three-point boundary value problems

Jian Jun Zhang *, Wen Bin Liu, Tai Yong Chen, Hui Xing Zhang

Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, People's Republic of China

Abstract

In this paper, the existences of solutions for *p*-Laplace equations subject to three-point boundary value conditions at resonance and non-resonance are studied by using degree theory and some known results are improved. © 2005 Elsevier Inc. All rights reserved.

Keywords: p-Laplace equations; Three-point boundary value; Resonance; Degree theory

1. Introduction and main results

The turbulent flow in a porous medium is a fundamental mechanics problem. For studying this type problem, Leibenson [1] introduced the following model

$$u_t = \frac{\partial}{\partial x} \left(\frac{\partial(u^m)}{\partial x} \left| \frac{\partial(u^m)}{\partial x} \right|^{p-1} \right), \tag{1.1}$$

where $m \ge 2$, $\frac{1}{2} \le p \le 1$. Generally, when $m \ge 1$, Eq. (1.1) is called porous medium equation [2]; when $0 \le m \le 1$, called diffusion equation; when m = 1, called heat equation, which often appears in non-Newtonian liquid [3]. For the study of Eq. (1.1), ones reduced Eq. (1.1) into the following *p*-Laplace equation

$$(\phi_p(u'))' = f(t, u, u'), \quad t \in (0, 1), \tag{1.2}$$

where $\phi_p(s) = |s|^{p-2}s$. Obviously, when p = 2, Eq. (1.2) becomes to the general second order differential equation.

In recent years, many important results relative to Eq. (1.2) with certain boundary conditions have been obtained (see [4–8,10], and references therein). Carcía-huidobro et al. [8] discussed the boundary value problems for *p*-Laplace Eq. (1.2) with boundary conditions

* Corresponding author.

E-mail addresses: zjj-cumt@163.com (J.J. Zhang), wblium@hotmail.com (W.B. Liu).

^{0096-3003/}\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2005.12.009

$$u'(0) = 0, \quad u(1) = u(\eta), \quad \eta \in (0, 1)$$
(1.3)

using the main assumptions as following:

(A₁) there are non-negative functions $d_1(t)$, $d_2(t)$, and $r(t) \in L^1[0,1]$ such that

$$|f(t, u, v)| \leq d_1(t)|u|^{p-1} + d_2(t)|v|^{p-1} + r(t), \text{ for a.e. } t \in [0, 1], u, v \in \mathbb{R};$$

(A₂) there exists $u_0 \ge 0$, such that for all $|u| \ge u_0$, $t \in [0, 1]$ and $v \in \mathbb{R}$, it holds that

 $|f(t,u,v)| \ge \Lambda |u|^{p-1} - A|v|^{p-1} - B,$

where $A \ge 0$, and $A, B \ge 0$; (A₃) there is $R \ge 0$ such that for all $|u| \ge R$, either

> uf(t, u, 0) > 0, a.e. $t \in [0, 1]$ or uf(t, u, 0) < 0, a.e. $t \in [0, 1]$

as well as other conditions.

In this paper, we discuss the solvability of the p-Laplace Eq. (1.2) at resonance and non-resonance, and obtain the following main results.

Theorem 2.1. Assume that $f: [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ is continuous and has the decomposition

$$f(t, u, v) = g(t, u, v) + h(t, u, v)$$

such that

(H₁) there exist
$$r_1 < 0$$
, $r_2 > 0$, such that
 $f(t, r_1, 0) \leq 0$, $f(t, r_2, 0) \geq 0$, for $t \in [0, 1]$;

(H₂) there is $R \ge 0$ such that

 $vg(t, u, v) \leq 0$, for $(t, u) \in [0, 1] \times [r_1, r_2]$, |v| > R;

(H₃) there are non-negative functions $a(t), b(t) \in C([0, 1], \mathbb{R}^+)$, such that for all $(t, u, v) \in [0, 1] \times [r_1, r_2] \times \mathbb{R}$ $|h(t, u, v)| \leq a(t)|v|^m + b(t)$, where $m \leq p$.

Then there exists a solution of BVP (1.2), (1.3). And we also get the following theorem:

Theorem 3.1. Let $f : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ is continuous. Assume that

 (H_4) there exist $r_3 < 0$, $r_4 > 0$, such that

 $f(t, r_3, 0) < 0$, $f(t, r_4, 0) > 0$, for $t \in [0, 1]$;

(H₅) there are non-negative functions $c(t), d(t) \in C([0,1], \mathbb{R}^+)$, such that for all $(t, u, v) \in [0,1] \times [r_1, r_2] \times \mathbb{R}^+$

$$|f(t, u, v)| \leq c(t)|v|^m + d(t),$$

where $m \leq p$.

Then there exists a solution of Eq. (1.2) with boundary conditions

$$u(0) = 0, \quad u(1) = u(\eta), \quad \eta \in (0, 1).$$
 (1.4)

Download English Version:

https://daneshyari.com/en/article/4636960

Download Persian Version:

https://daneshyari.com/article/4636960

Daneshyari.com